×

Higher Hölder regularity for nonlocal parabolic equations with irregular kernels. (English) Zbl 1527.35108

In this paper, the authors prove Hölder regularity for the parabolic equation \begin{align*} \partial_t u - \mathrm{pv}\int\limits_{\mathbb{R}^n}\Phi(u(x,t)-u(y,t))\frac{A(x,y,t)}{|x-y|^{n+2s}}\,dy=f, \end{align*} where \(\Phi:\mathbb{R}\to\mathbb{R}\) satisfies \(\Phi(0)=0\) and standard growth conditions \begin{align*} (\Phi(\xi)-\Phi(\xi'))(\xi-\xi')\gtrsim |\xi-\xi'|^2,\\ |\Phi(\xi)-\Phi(\xi')|\lesssim|\xi-\xi'|, \end{align*} \(A:\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}\to\mathbb{R}\) is measurable function bounded from above and below, which is “locally close enough to being translation invariant”, and \(f\) satisfies a suitable integrability condition. This condition allows for discontinuous kernels.
For \(\Phi(t)=t\) and \(A=1\), the equation is the fractional heat equation.
The condition on \(A\) is a parabolic version of the condition presented for nonlocal elliptic equations in [S. Nowak, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 24, 37 p. (2021; Zbl 1509.35087)].
The proofs use a perturbation argument similar to [S. Nowak, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 24, 37 p. (2021; Zbl 1509.35087)] and the method of iterated discrete differentiation from [L. Brasco et al., J. Evol. Equ. 21, No. 4, 4319–4381 (2021; Zbl 1486.35084)].
Additionally, the authors prove existence and local boundedness for this equation without the extra constraint on \(A\).

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs
35K10 Second-order parabolic equations
35R05 PDEs with low regular coefficients and/or low regular data
35R09 Integro-partial differential equations
47G20 Integro-differential operators

References:

[1] Karthik Adimurthi, Harsh Prasad, and Vivek Tewary, Local Hö lder regularity for nonlocal parabolic \(p \)-laplace equations, arXiv preprint arXiv:2205.09695 (2022), 1-31.
[2] Auscher, Pascal; Bortz, Simon; Egert, Moritz; Saari, Olli, Nonlocal self-improving properties: a functional analytic approach, Tunis. J. Math., 1, 2, 151-183 (2018) · Zbl 1409.35043 · doi:10.2140/tunis.2019.1.151
[3] Lorenzo Brasco and Erik Lindgren, Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case, Adv. Math. 304 (2017), 300-354. · Zbl 1364.35055
[4] Lorenzo Brasco, Erik Lindgren, and Armin Schikorra, Higher Hölder regularity for the fractional \(p\)-Laplacian in the superquadratic case, Adv. Math. 338 (2018), 782-846. · Zbl 1400.35049
[5] Brasco, Lorenzo; Lindgren, Erik; Strömqvist, Martin, Continuity of solutions to a nonlinear fractional diffusion equation, J. Evol. Equ., 21, 4, 4319-4381 (2021) · Zbl 1486.35084 · doi:10.1007/s00028-021-00721-2
[6] Sun-Sig Byun, Hyojin Kim, and Jihoon Ok, Local Hölder continuity for fractional nonlocal equations with general growth, Math. Ann. (2022), 1-40, doi:10.1007/s00208-022-02472-y. · Zbl 1522.35543
[7] Sun-Sig Byun, Jihoon Ok, and Kyeong Song, Hölder regularity for weak solutions to nonlocal double phase problems, J. Math. Pures Appl. (9) 168 (2022), 110-142. · Zbl 1504.35104
[8] Luis Caffarelli, Chi Hin Chan, and Alexis Vasseur, Regularity theory for parabolic nonlinear integral operators, J. Amer. Math. Soc. 24(3), 849-869, (2011), · Zbl 1223.35098
[9] Caffarelli, Luis; Silvestre, Luis, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200, 1, 59-88 (2011) · Zbl 1231.35284 · doi:10.1007/s00205-010-0336-4
[10] Luis Caffarelli and Pablo Raúl Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33(3), 767-807, (2016), · Zbl 1381.35211
[11] Sergio Campanato, Equazioni paraboliche del secondo ordine e spazi \({\cal{L}}^{2,\,\theta }\,(\Omega ,\,\delta )\), Ann. Mat. Pura Appl. (4) 73 (1966), 55-102. · Zbl 0144.14101
[12] Cozzi, Matteo, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes, J. Funct. Anal., 272, 11, 4762-4837 (2017) · Zbl 1366.49040 · doi:10.1016/j.jfa.2017.02.016
[13] G Da Prato, Spazi \(\cal{L}^{(p, \theta )}(\Omega , \delta )\) e loro proprietà, Ann. Mat. Pura Appl. 69 383-392, (1965), · Zbl 0145.16207
[14] Di Castro, Agnese; Kuusi, Tuomo; Palatucci, Giampiero, Local behavior of fractional \(p\)-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 5, 1279-1299 (2016) · Zbl 1355.35192 · doi:10.1016/j.anihpc.2015.04.003
[15] Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[16] DiBenedetto, Emmanuele, Degenerate parabolic equations (1993), Springer-Verlag, New York: Universitext, Springer-Verlag, New York · Zbl 0794.35090 · doi:10.1007/978-1-4612-0895-2
[17] Mengyao Ding, Chao Zhang, and Shulin Zhou, Local boundedness and Hölder continuity for the parabolic fractional \(p\)-Laplace equations, Calc. Var. Partial Differential Equations 60(1), Paper No. 38, 45, (2021), · Zbl 1459.35053
[18] Mouhamed Moustapha Fall, Regularity results for nonlocal equations and applications, Calc. Var. Partial Differential Equations 59(5), Paper No. 181, 53, (2020), · Zbl 1450.35093
[19] Mouhamed Moustapha Fall, Tadele Mengesha, Armin Schikorra, and Sasikarn Yeepo, Calderón-zygmund theory for non-convolution type nonlocal equations with continuous coefficient, Partial Differ. Equ. Appl. 3(2), 1-27, (2022), · Zbl 1487.35133
[20] Fernández-Real, Xavier; Ros-Oton, Xavier, Regularity theory for general stable operators: parabolic equations, J. Funct. Anal., 272, 10, 4165-4221 (2017) · Zbl 1372.35058 · doi:10.1016/j.jfa.2017.02.015
[21] Jacques Giacomoni, Deepak Kumar, and Konijeti Sreenadh, Hölder regularity results for parabolic nonlocal double phase problems, arXiv preprint arXiv:2112.04287 (2021), 1-52. · Zbl 1487.35234
[22] Górka, Przemysław, Campanato theorem on metric measure spaces, Ann. Acad. Sci. Fenn. Math, 34, 2, 523-528 (2009) · Zbl 1180.28007
[23] Qing Han and Fanghua Lin, Elliptic partial differential equations, second ed., Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011. · Zbl 1210.35031
[24] Kassmann, Moritz, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differential Equations, 34, 1, 1-21 (2009) · Zbl 1158.35019 · doi:10.1007/s00526-008-0173-6
[25] Moritz Kassmann and Russell W. Schwab, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.) 5(1), 183-212, (2014), · Zbl 1329.35095
[26] Janne Korvenpää, Tuomo Kuusi, and Giampiero Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differential Equations 55(3), Art. 63, 29, (2016), · Zbl 1346.35214
[27] Kuusi, Tuomo; Mingione, Giuseppe; Sire, Yannick, Nonlocal equations with measure data, Comm. Math. Phys., 337, 3, 1317-1368 (2015) · Zbl 1323.45007 · doi:10.1007/s00220-015-2356-2
[28] Kuusi, Tuomo; Mingione, Giuseppe; Sire, Yannick, Nonlocal self-improving properties, Anal. PDE, 8, 1, 57-114 (2015) · Zbl 1317.35284 · doi:10.2140/apde.2015.8.57
[29] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968, Translated from the Russian by S. Smith. · Zbl 0174.15403
[30] Leonori, Tommaso; Peral, Ireneo; Primo, Ana; Soria, Fernando, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35, 12, 6031-6068 (2015) · Zbl 1332.45009 · doi:10.3934/dcds.2015.35.6031
[31] Naian Liao, Hölder regularity for parabolic fractional \(p \)-laplacian, arXiv preprint arXiv:2205.10111 (2022), 1-26.
[32] Mengesha, Tadele; Schikorra, Armin; Yeepo, Sasikarn, Calderon-zygmund type estimates for nonlocal pde with hölder continuous kernel, Adv. Math., 383 (2021) · Zbl 1462.35117 · doi:10.1016/j.aim.2021.107692
[33] Simon Nowak, Higher Hölder regularity for nonlocal equations with irregular kernel, Calc. Var. Partial Differential Equations 60(1), Paper No. 24, 37, (2021), · Zbl 1509.35087
[34] Simon Nowak, Regularity theory for nonlocal equations with vmo coefficients, arXiv preprint arXiv:2101.11690 (2021), 1-59.
[35] Simon Nowak, Higher integrability for nonlinear nonlocal equations with irregular kernel, Analysis and partial differential equations on manifolds, fractals and graphs, Adv. Anal. Geom. (2021), vol. 3, De Gruyter, Berlin, pp. 459-492. · Zbl 1476.35068
[36] Simon Nowak, Improved sobolev regularity for linear nonlocal equations with vmo coefficients, Math. Ann. (2022), 1-56, doi:10.1007/s00208-022-02369-w.
[37] Schikorra, Armin, Nonlinear commutators for the fractional p-laplacian and applications, Math. Ann., 366, 1, 695-720 (2016) · Zbl 1351.35255 · doi:10.1007/s00208-015-1347-0
[38] James M Scott and Tadele Mengesha, Self-improving inequalities for bounded weak solutions to nonlocal double phase equations, Commun. Pure Appl. Anal. 21(1), 183-212, (2022), · Zbl 1481.35105
[39] Silvestre, Luis, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., 55, 3, 1155-1174 (2006) · Zbl 1101.45004 · doi:10.1512/iumj.2006.55.2706
[40] Strömqvist, Martin, Harnack’s inequality for parabolic nonlocal equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 6, 1709-1745 (2019) · Zbl 1421.35190 · doi:10.1016/j.anihpc.2019.03.003
[41] Strömqvist, Martin, Local boundedness of solutions to non-local parabolic equations modeled on the fractional p-laplacian, J. Differential Equations, 266, 12, 7948-7979 (2019) · Zbl 1445.35093 · doi:10.1016/j.jde.2018.12.021
[42] Alireza Tavakoli, A perturbative approach to Hölder continuity of solutions to a nonlocal \(p\)-parabolic equation, arXiv preprint arXiv:2301.03993 (2023), 1-47.
[43] Eduardo V Teixeira and José Miguel Urbano, A geometric tangential approach to sharp regularity for degenerate evolution equations, Anal. PDE 7(3), 733-744, (2014), · Zbl 1295.35296
[44] Juan Luis Vázquez, The fractional \(p\)-Laplacian evolution equation in \({\mathbb{R}}^N\) in the sublinear case, Calc. Var. Partial Differential Equations 60(4), Paper No. 140, 59, (2021) · Zbl 1471.35312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.