×

Hybrid reliability-based sequential optimization for PID vibratory controller design considering interval and fuzzy mixed uncertainties. (English) Zbl 1525.93143


MSC:

93C05 Linear systems in control theory
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
93B36 \(H^\infty\)-control
93B51 Design techniques (robust design, computer-aided design, etc.)
Full Text: DOI

References:

[1] Liu, Y. H., Application of a proportional feedback controller for active control of a vibration isolator, J. Low Freq. Noise Vibr. Active Contr., 24, 181-190 (2005)
[2] Guo, S. X.; Li, Y., Non-probabilistic reliability method and reliability-based optimal LQR design for vibration control of structures with uncertain-but-bounded parameters, Acta Mech. Sin., 29, 864-874 (2013) · Zbl 1346.70030
[3] Rimasauskiene, R.; Jurenas, V.; Radzienski, M.; Rimasauskas, M.; Ostachowicz, W., Experimental analysis of active-passive vibration control on thin-walled composite beam, Compos. Struct., 223, Article 110975 pp. (2019)
[4] Airaksinen, T.; Toivanen, J., An optimal local active noise control method based on stochastic finite element models, J. Sound Vib., 332, 6924-6933 (2013)
[5] Yulianti, L.; Nazra, A.; Zulakmal, A.; Bahar, Muhafzan, On discounted LQR control problem for disturbanced singular system, Arch. Contr. Sci., 29, 147-156 (2019) · Zbl 1442.49042
[6] Guo, C., PID parameter optimization using T-S fuzzy adaptive particle swarm optimization, Comput. Eng. Appl., 1, 276-286 (2009)
[7] Wang, L.; Zhao, Y. Y.; Liu, J. X.; Zhou, Z., Uncertainty-oriented optimal PID control design framework for piezoelectric structures based on subinterval dimension-wise method (SDWM) and non-probabilistic time-dependent reliability (NTDR) analysis, J Sound Vib, 549, Article 117588 pp. (2023)
[8] Boyd, S.; Martin, H.; Karl, J.Å., MIMO PID tuning via iterated LMI restriction, Int. J. Robust Nonlinear Contr., 26, 1718-1731 (2016) · Zbl 1417.93162
[9] Wang, L.; Zhao, X. Y.; Wu, Z. M.; Chen, W. P., Evidence theory-based reliability optimization for cross-scale topological structures with global stress, local displacement and micro manufacturing constraints, Struct. Multidiscip. Optim., 65, 1-30 (2022)
[10] Zames, G., Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses, IEEE Trans. Automat. Contr., 26, 301-320 (1981) · Zbl 0474.93025
[11] Sun, W. C.; Gao, H. J.; Yao, B., Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators, IEEE Trans. Contr. Syst. Technol., 21, 2417-2422 (2013)
[12] Das, E.; Başlamışlı, S.Ç., Two degree of freedom robust data-driven fixed-order controller synthesis using convex optimization, ISA Trans., 114, 291-305 (2021)
[13] Karimi, A.; Gorka, G., Fixed-order Hinf controller design for nonparametric models by convex optimization, Automatica, 46, 1388-1394 (2010) · Zbl 1204.93042
[14] Karimi, A.; Achille, N.; Yuanming, Z., Robust Hinf controller design using frequency-domain data via convex optimization, Int. J. Robust Nonlinear Contr., 28, 3766-3783 (2018) · Zbl 1401.93088
[15] Cornell, C. A., A probability-based structural code, J. Am. Concr. Inst., 66, 947-985 (1969)
[16] Qin, B. Y.; Fang, C.; Ma, K.; Li, J., Probabilistic energy flow calculation through the Nataf transformation and point estimation, Appl. Sci.-Basel, 9, 3291 (2019)
[17] Venini, P.; Mariani, C., Reliability as a measure of active control effectiveness, Comput. Struct., 73, 465-473 (1999) · Zbl 1049.74718
[18] Crespo, L. G.; Kenny, S. P., Reliability-based control design for uncertain systems, J. Guid. Contr. Dyn., 28, 649-658 (2005)
[19] Li, J., Probability density evolution method: background, significance and recent developments, Probab. Eng. Mech., 44, 111-117 (2016)
[20] Li, J.; Chen, J. B., The probability density evolution method for dynamic response analysis of non-linear stochastic structures, Int. J. Numer. Methods Eng., 65, 882-903 (2006) · Zbl 1179.74054
[21] Zhang, J. F.; Du, X. P., Time-dependent reliability analysis for function generation mechanisms with random joint clearances, Mech. Mach. Theory, 92, 184-199 (2015)
[22] Du, X. P., Time-dependent mechanism reliability analysis with envelope functions and first-order approximation, J. Mech. Des., 136, Article 081010 pp. (2014)
[23] Wang, L.; Liu, J. X.; Yang, C.; Wu, D., A novel interval dynamic reliability computation approach for the risk evaluation of vibration active control systems based on PID controllers, Appl. Math. Model., 92, 422-446 (2021) · Zbl 1481.93043
[24] Wang, L.; Xiong, C.; Yang, Y. W., A novel methodology of reliability-based multidisciplinary design optimization under hybrid interval and fuzzy uncertainties, Comput. Methods Appl. Mech. Eng., 337, 439-457 (2018) · Zbl 1440.74272
[25] Wang, L.; Liu, J. X.; Zhou, Z.; Li, Y. L., A two-stage dimension-reduced dynamic reliability evaluation (TD-DRE) method for vibration control structures based on interval collocation and narrow bounds theories, ISA Trans. (2023)
[26] Ben-Haim, Y., A non-probabilistic concept of reliability, Struct. Saf., 14, 864-874 (1994)
[27] Jiang, C.; Bi, R. G.; Lu, G. Y.; Han, X., Structural reliability analysis using non-probabilistic convex model, Comput. Methods Appl. Mech. Eng., 254, 83-98 (2013) · Zbl 1297.74091
[28] Liu, J. X.; Wang, L., A two-stage dimension-reduced dynamic reliability evaluation (TD-DRE) method for vibration control structures based on interval collocation and narrow bounds theories, Reliab. Eng. Syst. Saf., 230, Article 108956 pp. (2023)
[29] Kaufmann, A., Introduction to the Theory of Fuzzy Subsets (1975), Academic Press: Academic Press New York · Zbl 0332.02063
[30] Brown, C. B., Entropy constructed probabilities, J. Eng. Mech. Div., 106, 633-640 (1980)
[31] Brown, C. B., The merging of fuzzy and crisp information, J. Eng. Mech. Div., 106, 123-133 (1980)
[32] Feng, K. X.; Lu, Z. Z.; Zhang, X. B., Efficient sample reduction strategy based on adaptive Kriging for estimating failure credibility, Struct. Multidiscip. Optim., 63, 2125-2140 (2021)
[33] Liu, Y. R.; Wang, L.; Li, M.; Wu, Z. M., A distributed dynamic load identification method based on the hierarchical-clustering-oriented radial basis function framework using acceleration signals under convex-fuzzy hybrid uncertainties, Mech. Syst. Signal Process., 172, Article 108935 pp. (2022)
[34] Jiang, C.; Zhang, Q. F.; Han, X.; Qian, Y. H., A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model, Acta Mech., 225, 383-395 (2014)
[35] Li, Z. S.; Wang, L.; Luo, Z. X., Feature-driven robust topology optimization strategy considering movable non-design domain and complex uncertainty, Comput. Methods Appl. Mech. Eng., 401, Article 115658 pp. (2022) · Zbl 1507.74266
[36] Chakraborty, S.; Sam, P. C., Probabilistic safety analysis of structures under hybrid uncertainty, Int. J. Numer. Methods Eng., 70, 405-422 (2007) · Zbl 1194.74547
[37] Guo, J.; Du, X. P., Reliability analysis for multidisciplinary systems with random and interval variables, Aiaa J., 48, 82-91 (2010)
[38] Cao, S. S.; Lei, J. Q., Hybrid reliability model for fatigue reliability analysis of steel bridges, J. Cent. South Univ., 23, 449-460 (2016)
[39] Wang, C.; Qiu, Z.; Xu, M.; Qiu, H., Novel fuzzy reliability analysis for heat transfer system based on interval ranking method, Int. J. Therm. Sci., 116, 234-241 (2017)
[40] Lee, G.; Jun, K. S.; Chung, E. S., Robust spatial flood vulnerability assessment for Han River using fuzzy TOPSIS with alpha-cut level set, Expert Syst. Appl., 41, 644-654 (2014)
[41] Wang, L.; Liu, J. X.; Li, Y. L., The optimal controller design framework for PID-based vibration active control systems via non-probabilistic time-dependent reliability measure, ISA Trans., 105, 129-145 (2020)
[42] Wang, L.; Zhou, Z.; Liu, J. X., Interval-based optimal trajectory tracking control method for manipulators with clearance considering time-dependent reliability constraints, Aerosp. Sci. Technol., 128, Article 107745 pp. (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.