×

Robust \(H_\infty\) controller design using frequency-domain data via convex optimization. (English) Zbl 1401.93088

Summary: A new robust controller design method that satisfies the \(H_\infty\) criterion is developed for linear time-invariant Single-Input Single-Output (SISO) systems. A data-driven approach is implemented in order to avoid the unmodeled dynamics associated with parametric models. This data-driven method uses fixed-order controllers to satisfy the \(H_\infty\) criterion in the frequency domain. Necessary and sufficient conditions for the existence of such controllers are presented by a set of convex constraints. These conditions are also extended to systems with frequency-domain uncertainties in polytopic form. It is shown that the upper bound on the weighted infinity norm of the sensitivity function converges monotonically to the optimal value, when the controller order increases. Additionally, the practical issues involved in computing fixed-order rational \(H_\infty\) controllers in discrete-time or continuous-time by convex optimization techniques are addressed.

MSC:

93B36 \(H^\infty\)-control
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] BazanellaAS, CampestriniL, EckhardD. Data‐driven Controller Design: The H_2 Approach. Springer Dordrecht Heidelberg London New York, 2012. · Zbl 1241.93001
[2] HouZS, WangZ. From model‐based control to data‐driven control: survey, classification and perspective. Information Sciences2013; 235: 3-35. · Zbl 1284.93010
[3] YinS, LiX, GaoH, KaynakO. Data‐based techniques focused on modern industry: an overview. IEEE Transactions on Industrial Electronics2015; 62(1): 657-667.
[4] FormentinS, vanHeusdenK, KarimiA. A comparison of model‐based and data‐driven controller tuning. International Journal of Adaptive Control and Signal Processing2014; 28(10): 882-897. · Zbl 1337.93016
[5] LandauID, LozanoR, M’SaadM, KarimiA. Adaptive Control: Algorithms, Analysis and Applications. Springer‐Verlag: London, 2011. · Zbl 1234.93002
[6] SafonovMG, TsaoTC. The unfalsified control concept and learning. IEEE Transactions on Automatic Control1997; 42(6): 2819-2824.
[7] HjalmarssonH, GeversM, GunnarssonS, LequinO. Iterative feedback tuning: theory and application. IEEE Control Systems Magazine1998; 18(4): 26-41.
[8] CampiMC, LecchiniA, SavaresiSM. Virtual reference feedback tuning: a direct method for the design of feedback controllers. Automatica2002; 38: 1337-1346. · Zbl 1008.93037
[9] KarimiA, MiškovićL, BonvinD. Iterative correlation‐based controller tuning. International Journal of Adaptive Control and Signal Processing2004; 18(8): 645-664. · Zbl 1055.93030
[10] StefanovicM, SafonovMG. Safe Adaptive Control: Data‐Driven Stability Analysis and Robust Synthesis, Vol. 405. Springer‐Verlag London, 2011. · Zbl 1226.93005
[11] BattistelliG, HespanhaJP, MoscaE, TesiP. Model‐free adaptive switching control of time‐varying plants. IEEE Transactions on Automatic Control2013; 58(5): 1208-1220. · Zbl 1369.93279
[12] Sánchez‐PeñaR, ColmegnaP, BianchiF. Unfalsified control based on the H_∞ controller parameterisation. International Journal of Systems Science2015; 46(15): 2820-2831. · Zbl 1334.93065
[13] KarimiA, KunzeM, LongchampR. Robust controller design by linear programming with application to a double‐axis positioning system. Control Engineering Practice2007; 15(2): 197-208.
[14] HoogendijkR, Den HamerAJ, AngelisG, van deMolengraftR, SteinbuchM. Frequency response data based optimal control using the data based symmetric root locus. In IEEE International Conference on Control Applications, Yokohama, Japan, 2010; 257-262.
[15] KeelLH, BhattacharyyaSP. Controller synthesis free of analytical models: three term controllers. IEEE Transactions on Automatic Control2008; 53(6): 1353-1369. · Zbl 1367.93232
[16] ParastvandH, KhosrowjerdiMJ. Controller synthesis free of analytical model: fixed‐order controllers. International Journal of Systems Science2015; 46(7): 1208-1221. · Zbl 1312.93047
[17] Den HamerAJ, WeilandS, SteinbuchM. Model‐free norm‐based fixed structure controller synthesis. In 48th IEEE Conference on Decision and Control, Shanghai, China, 2009; 4030-4035.
[18] KhadraouiS, NounouH, NounouM, DattaA, BhattacharyyaS. Measurement‐based approach for designing reduced‐order controllers with guaranteed bounded error. International Journal of Control2013; 86(9): 1586-1596. · Zbl 1278.93062
[19] KhadraouiS, NounouH, NounouM, DattaA, BhattacharyyaS. Robust control design method for uncertain system using a set of measurements. American Control Conference (ACC)2013; 2013: 4325-4330.
[20] KarimiA, GaldosG. Fixed‐order H_∞ controller design for nonparametric models by convex optimization. Automatica2010; 46(8): 1388-1394. · Zbl 1204.93042
[21] HastM, AströmK, BernhardssonB, BoydS. PID design by convex‐concave optimization. In Proceedings European Control Conference, Citeseer, 2013; 4460-4465.
[22] GaldosG, KarimiA, LongchampR. H_∞ controller design for spectral MIMO models by convex optimization. Journal of Process Control2010; 20(10): 1175-1182.
[23] KarimiA. Frequency‐domain robust control toolbox. In 52nd IEEE Conference in Decision and Control, Florence, Italy, 2013; 3744-3749.
[24] ParastvandH, KhosrowjerdiMJ. Parameterised controller synthesis for SISO‐LTI uncertain plants using frequency domain information. International Journal of Systems Science2016; 47(1): 32-44. · Zbl 1333.93174
[25] ZhouK, DoyleJC. Essentials of Robust Control. Prentice‐Hall: N.Y., 1998.
[26] DoyleCJ, FrancisBA, TannenbaumAR. Feedback Control Theory. Mc Millan: New York, 1992.
[27] ZhouK. Essentials of Robust Control. Prentice Hall: New Jersey, 1998.
[28] RantzerA, MegretskiA. Convex parameterization of robustly stabilizing controllers. IEEE Transactions on Automatic Control1994; 39(9): 1802-1808. · Zbl 0815.93033
[29] LjungL. System Identification ‐ Theory for the User (2nd edn.) Prentice Hall: NJ, USA, 1999.
[30] GloverK, McfarlaneD. Robust stabilization of normalized coprime factor plant descriptions with h‐bounded uncertainty. IEEE Transactions on Automatic Control1989; 34(8): 821-830. · Zbl 0698.93063
[31] HeubergerP, Van den HofP, Wahlberg B. Modelling and Identification with Rational Basis Functions. Springer‐Verlag: London, UK, 2005.
[32] AkcayH, NinnessB. Orthonormal basis functions for continuous‐time systems and L_p convergence. Mathematics of Control Signals, and Systems1999; 12: 295-305. · Zbl 0952.93020
[33] CalafioreG, CampiMC. The scenario approach to robust control design. IEEE Transactions on Automatic Control2006; 51(5): 742-753. · Zbl 1366.93457
[34] AlamoT, TempoR, LuqueA. On the sample complexity of probabilistic analysis and design methods. In Perspectives in Mathematical System Theory, Control, and Signal Processing. Springer Berlin Heidelberg, 2010; 39-55.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.