×

Non-probabilistic reliability method and reliability-based optimal LQR design for vibration control of structures with uncertain-but-bounded parameters. (English) Zbl 1346.70030

Summary: Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration control of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliability. An efficient non-probabilistic robust reliability methodfor LQR-based static output feedback robust control of uncertain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration controller design for uncertain structures is carried out by solving a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance under the condition that the controlled structure is robustly reliable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design of uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.

MSC:

70Q05 Control of mechanical systems
49N90 Applications of optimal control and differential games
Full Text: DOI

References:

[1] Spencer, B.F., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129, 845–856 (2003) · doi:10.1061/(ASCE)0733-9445(2003)129:7(845)
[2] Chopra, I.: Review of state of art of smart structures and integrated systems. AIAA J. 40, 2145–2187 (2002) · doi:10.2514/2.1561
[3] Karagulle, H., Malgaca, L., Oktem, H.F.: Analysis of active vibration control in smart structures by ANSYS. Smart Mater. Struct. 13, 661–667 (2004) · doi:10.1088/0964-1726/13/4/003
[4] Camino, J.F., Oliveria, M.C., Skelton, R.E.: Convexifying linear matrix inequality methods for integrating structure and control design. J. Struct. Eng. 129, 978–988 (2003) · doi:10.1061/(ASCE)0733-9445(2003)129:7(978)
[5] Vasques, C.M.A., Rodrigues, J.D.: Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies. Comput Struct 84, 1402–1414 (2006) · doi:10.1016/j.compstruc.2006.01.026
[6] Iorga, L., Baruh, H., Ursu, I.: A review of Hrobust control of piezoelectric smart structures. Appl. Mech. Rev. 61, 17–31 (2008) · doi:10.1115/1.2939371
[7] Jiang, J.P., Li, D.X.: Decentralized robust vibration control of smart structures with parameter uncertainties. J. Intell. Mater. Syst. Struct. 22, 137–147 (2011) · doi:10.1177/1045389X10391496
[8] Zhou, K., Doyle, J.C., Glover K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996) · Zbl 0999.49500
[9] Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51, 742–753 (2006) · Zbl 1366.93457 · doi:10.1109/TAC.2006.875041
[10] Du, H., Lam, J., Sze, K.Y.: Design of non-fragile Hcontroller for active vehicle suspensions. J. Vib. Control 11, 225–243 (2005) · Zbl 1182.70055 · doi:10.1177/1077546305049392
[11] Costa, E.F., Oliveira, V.A.: On the design of guaranteed cost controllers for a class of uncertain linear systems. Syst. Control Lett. 46, 17–29 (2002) · Zbl 0994.93013 · doi:10.1016/S0167-6911(01)00198-0
[12] Mukaidani, H.: A new approach to robust guaranteed cost control for uncertain Multimodeling systems. Automatica 41, 1055–1062 (2005) · Zbl 1091.93020 · doi:10.1016/j.automatica.2005.01.003
[13] Ben-Haim, Y.: A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Struct. Saf. 17, 91–109 (1995) · doi:10.1016/0167-4730(95)00004-N
[14] Elishakoff, I.: Essay on uncertainties in elastic and viscoelastic structures: From A.M. Freudenthal’s criticisms to modern convex modeling. Comput. Struct. 56, 871–895 (1995) · Zbl 0921.73004 · doi:10.1016/0045-7949(94)00499-S
[15] Ben-Haim, Y.: Robust Reliability in the Mechanical Sciences. Springer Verlag, Berlin (1996) · Zbl 0860.62071
[16] Ben-Haim, Y.: Uncertainty, probability and information-gaps. Reliab. Eng. Syst. Saf. 85, 249–266 (2004) · doi:10.1016/j.ress.2004.03.015
[17] Chen, S.H., Song, M., Chen, Y.D.: Robustness analysis of vibration control structures with uncertain parameters using interval algorithm. Struct. Saf. 29, 94–111 (2007) · doi:10.1016/j.strusafe.2006.03.001
[18] Jiang, C., Bi, R.G., Lu, G.Y., et al.: Structural reliability analysis using non-probabilistic convex model. Comput. Methods Appl. Mech. Eng. 254, 83–98 (2013) · Zbl 1297.74091 · doi:10.1016/j.cma.2012.10.020
[19] Jiang, C., Han, X., Lu, G.Y., et al.: Correlation analysis of nonprobabilistic convex model and corresponding structural reliability technique. Comput. Methods Appl. Mech. Eng. 200, 2528–2546 (2011) · Zbl 1230.74240 · doi:10.1016/j.cma.2011.04.007
[20] Kanno, Y., Takewaki, I.: Confidence ellipsoids for static response of trusses with load and structural uncertainties. Comput. Methods Appl. Mech. Eng. 196, 393–403 (2006) · Zbl 1120.74436 · doi:10.1016/j.cma.2006.04.007
[21] Guo, X., Bai, W., Zhang, W.S.: Confidence structural robust design and optimization under stiffness and load uncertainties. Comput. Methods Appl. Mech. Eng. 198, 3378–3399 (2010) · Zbl 1230.74148 · doi:10.1016/j.cma.2009.06.018
[22] Guo, X., Du, J.M., Gao, X.X: Confidence structural robust optimization by non-linear semidefinite programming-based single-level formulation. Int. J. Numer. Methods Eng. 86, 953–974 (2011) · Zbl 1235.74257 · doi:10.1002/nme.3083
[23] Alamo, T., Tempo, R., Ramirez, D.R., et al.: A new vertex result for robustness problems with interval matrix uncertainty. Syst. Control Lett. 57, 474–481 (2008) · Zbl 1154.93023 · doi:10.1016/j.sysconle.2007.11.003
[24] Seo, J., Chung, D., Park, C.G., et al.: The robustness of controllability and observability for discrete linear time-varying systems with norm-bounded uncertainty. IEEE Trans. Autom. Control 50, 1039–1043 (2005) · Zbl 1365.93046 · doi:10.1109/TAC.2005.851451
[25] Spencer, B.F., Sain, M.K., Won, C.H., et al.: Reliability-based measures of structural control robustness. Struct. Saf. 15, 111–129 (1994) · doi:10.1016/0167-4730(94)90055-8
[26] Breitung, K., Casciati, F., Faravelli, L.: Reliability based stability analysis for actively controlled structures. Eng. Struct. 20, 211–215 (1998) · doi:10.1016/S0141-0296(97)00071-0
[27] Venini, P., Mariani, C.: Reliability as a measure of active control effectiveness. Comput. Struct. 73, 465–473 (1999) · Zbl 1049.74718 · doi:10.1016/S0045-7949(98)00275-2
[28] Crespo, L.G., Kenny, S.P.: Reliability-based control design for uncertain systems. J. Guid. Control Dyn. 28, 649–658 (2005) · doi:10.2514/1.9127
[29] Mengali, G., Pieracci, A.: Probabilistic approach for integrated structural control design. AIAA J. 38, 1767–1769 (2000) · doi:10.2514/2.1170
[30] Taflanidis, A.A., Scruggs, J.T., Beck, J.L.: Reliability-based performance objectives and probabilistic robustness in structural control applications. J. Eng. Mech. 134, 291–301 (2008) · doi:10.1061/(ASCE)0733-9399(2008)134:4(291)
[31] Chakraborty, S., Roy, B.K.: Reliability based optimum design of tuned mass damper in seismic vibration control of structures with bounded uncertain parameters. Probab. Eng. Mech. 26, 215–221 (2011) · doi:10.1016/j.probengmech.2010.07.007
[32] Li, J., Peng, Y.B., Chen, J.B.: Probabilistic criteria of structural stochastic optimal controls. Probab. Eng. Mech. 26, 240–253 (2011) · doi:10.1016/j.probengmech.2010.07.011
[33] Guo, S.X., Zhang, L.: Robust reliability-based optimal design of robust Hcontroller for time-delay systems with parametric uncertainty. Control Theory Appl. 23, 981–985 (2006) (in Chinese) · Zbl 1115.93307
[34] Guo, S.X.: Robust reliability as a measure of stability of parametric uncertain systems. J. Vib. Control 16, 1351–1368 (2010) · Zbl 1269.93078 · doi:10.1177/1077546309339423
[35] Guo, S.X.: Stability analysis and design of time-delay uncertain systems using robust reliability method. J. Syst. Eng. Electron. 22, 493–499 (2011) · doi:10.3969/j.issn.1004-4132.2011.03.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.