×

Accelerated high-cycle phase field fatigue predictions. (English) Zbl 1525.74180

Summary: Phase field fracture models have seen widespread application in the last decade. Among these applications, its use to model the evolution of fatigue cracks has attracted particular interest, as fatigue damage behaviour can be predicted for arbitrary loading histories, dimensions and complexity of the cracking phenomena at play. However, while cycle-by-cycle calculations are remarkably flexible, they are also computationally expensive, hindering the applicability of phase field fatigue models for technologically-relevant problems. In this work, a computational framework for accelerating phase field fatigue calculations is presented. Two novel acceleration strategies are proposed, which can be used in tandem and together with other existing acceleration schemes from the literature. The computational performance of the proposed methods is documented through a series of 2D and 3D boundary value problems, highlighting the robustness and efficiency of the framework even in complex fatigue problems. The observed reduction in computation time using both of the proposed methods in tandem is shown to reach a speed-up factor of 32, with a scaling trend enabling even greater reductions in problems with more load cycles.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Ai, W.; Wu, B.; Martínez-Pañeda, E., A coupled phase field formulation for modelling fatigue cracking in lithium-ion battery electrode particles, J. Power Sources, 544, Article 231805 pp. (2022)
[2] Aldakheel, F.; Wriggers, P.; Miehe, C., A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput. Mech., 62, 4, 815-833 (2018) · Zbl 1459.74024
[3] Alessi, R.; Ambati, M.; Gerasimov, T.; Vidoli, S.; Lorenzis, L. D., Comparison of phase-field models of fracture coupled with plasticity, Comput. Methods Appl. Sci., 46, 1-21 (2018) · Zbl 1493.74006
[4] Alessi, R.; Ulloa, J., Endowing Griffith’s fracture theory with the ability to describe fatigue cracks, Eng. Fract. Mech., Article 109048 pp. (2023)
[5] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2014) · Zbl 1398.74270
[6] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput. Mech., 57, 1, 149-167 (2016) · Zbl 1381.74181
[7] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[8] Anand, L.; Mao, Y.; Talamini, B., On modeling fracture of ferritic steels due to hydrogen embrittlement, J. Mech. Phys. Solids, 122, 280-314 (2019) · Zbl 1453.74006
[9] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[10] Börjesson, E.; Remmers, J. J.; Fagerström, M., A generalised path-following solver for robust analysis of material failure, Comput. Mech. (2022) · Zbl 1498.74080
[11] Bourdin, B.; Francfort, G. A.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 1-23 (2000) · Zbl 0995.74057
[12] Bourdin, B.; Marigo, J.-J.; Maurini, C.; Sicsic, P., Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., 112, 1, 14301 (2014)
[13] Boyce, A. M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y. S.; Bailey, J. J.; Heenan, T. M.; Brett, D. J.; Shearing, P. R., Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling, J. Power Sources, 526, Article 231119 pp. (2022)
[14] Carlsson, K.; Ekre, F.; Contributors, A., Ferrite.jl (2021), URL https://github.com/Ferrite-FEM/Ferrite.jl
[15] Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L., A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach, Comput. Methods Appl. Mech. Engrg., 361, Article 112731 pp. (2020) · Zbl 1442.74195
[16] Cojocaru, D.; Karlsson, A. M., A simple numerical method of cycle jumps for cyclically loaded structures, Int. J. Fatigue, 28, 12, 1677-1689 (2006)
[17] DTU Computing Center, D., DTU Computing Center resources (2021)
[18] Duda, F. P.; Ciarbonetti, A.; Toro, S.; Huespe, A. E., A phase-field model for solute-assisted brittle fracture in elastic-plastic solids, Int. J. Plast., 102, November 2017, 16-40 (2018)
[19] Feng, Y.; Li, J., Phase-field cohesive fracture theory: A unified framework for dissipative systems based on variational inequality of virtual works, J. Mech. Phys. Solids, 159, Article 104737 pp. (2022)
[20] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[21] Freddi, F.; Mingazzi, L., Mesh refinement procedures for the phase field approach to brittle fracture, Comput. Methods Appl. Mech. Engrg., 388, Article 114214 pp. (2022) · Zbl 1507.74469
[22] Freddi, F.; Mingazzi, L., Adaptive mesh refinement for the phase field method: A FEniCS implementation, Appl. Eng. Sci., 14, Article 100127 pp. (2023) · Zbl 1507.74469
[23] Freddi, F.; Royer-Carfagni, G., Regularized variational theories of fracture: A unified approach, J. Mech. Phys. Solids, 58, 8, 1154-1174 (2010) · Zbl 1244.74114
[24] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg., 312, 276-303 (2016) · Zbl 1439.74349
[25] Golahmar, A.; Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., A phase field model for hydrogen-assisted fatigue, Int. J. Fatigue, 154, Article 106521 pp. (2022)
[26] Golahmar, A.; Niordson, C. F.; Martínez-Pañeda, E., A phase field model for high-cycle fatigue: Total-life analysis, Int. J. Fatigue, 170, Article 107558 pp. (2023)
[27] Guillén-Hernández, T.; Quintana-Corominas, A.; García, I. G.; Reinoso, J.; Paggi, M.; Turón, A., In-situ strength effects in long fibre reinforced composites: A micro-mechanical analysis using the phase field approach of fracture, Theor. Appl. Fract. Mech., 108, Article 102621 pp. (2020)
[28] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[29] Hirshikesh, T.; Natarajan, S.; Annabattula, R. K.; Martínez-Pañeda, E., Phase field modelling of crack propagation in functionally graded materials, Composites B, 169, 239-248 (2019)
[30] Jodlbauer, D.; Langer, U.; Wick, T., Matrix-free multigrid solvers for phase-field fracture problems, Comput. Methods Appl. Mech. Engrg., 372, Article 113431 pp. (2020) · Zbl 1506.74355
[31] Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M., An assessment of the phase field formulation for crack growth, Comput. Methods Appl. Mech. Engrg., 294, 313-330 (2015) · Zbl 1423.74833
[32] Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M., Modeling crack growth during Li insertion in storage particles using a fracture phase field approach, J. Mech. Phys. Solids, 92, 313-344 (2016)
[33] Kristensen, P. K.; Martínez-Pañeda, E., Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme, Theor. Appl. Fract. Mech., 107, Article 102446 pp. (2020)
[34] Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., A phase field model for elastic-gradient-plastic solids undergoing hydrogen embrittlement, J. Mech. Phys. Solids, 143, Article 104093 pp. (2020)
[35] Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., Applications of phase field fracture in modelling hydrogen assisted failures, Theor. Appl. Fract. Mech., 110 (2020)
[36] Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., An assessment of phase field fracture: Crack initiation and growth, Phil. Trans. R. Soc. A, 379, 2203 (2021)
[37] Lampron, O.; Therriault, D.; Lévesque, M., An efficient and robust monolithic approach to phase-field brittle fracture using a modified Newton method, Comput. Methods Appl. Mech. Engrg., 306 (2021) · Zbl 1507.74394
[38] Linse, T.; Hennig, P.; Kästner, M.; de Borst, R., A convergence study of phase-field models for brittle fracture, Eng. Fract. Mech., 184, 307-318 (2017)
[39] Lo, Y. S.; Borden, M. J.; Ravi-Chandar, K.; Landis, C. M., A phase-field model for fatigue crack growth, J. Mech. Phys. Solids, 132, Article 103684 pp. (2019) · Zbl 1480.74019
[40] Loew, P. J.; Poh, L. H.; Peters, B.; Beex, L. A., Accelerating fatigue simulations of a phase-field damage model for rubber, Comput. Methods Appl. Mech. Engrg., 370, Article 113247 pp. (2020) · Zbl 1506.74020
[41] Lorenzis, L. D.; Maurini, C., Nucleation under multi-axial loading in variational phase-field models of brittle fracture, Int. J. Fract., 237, 61-81 (2022)
[42] Mandal, T. K.; Nguyen, V. P.; Wu, J. Y., Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture, Eng. Fract. Mech., 217, Article 106532 pp. (2019)
[43] Martínez-Pañeda, E.; Golahmar, A.; Niordson, C. F., A phase field formulation for hydrogen assisted cracking, Comput. Methods Appl. Mech. Engrg., 342, 742-761 (2018) · Zbl 1440.82005
[44] Mesgarnejad, A.; Imanian, A.; Karma, A., Phase-field models for fatigue crack growth, Theor. Appl. Fract. Mech., 103, Article 102282 pp. (2019)
[45] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022
[46] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[47] Molnár, G.; Gravouil, A., 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., 130, 27-38 (2017)
[48] Navidtehrani, Y.; Betegón, C.; Martínez-Pañeda, E., A general framework for decomposing the phase field fracture driving force, particularised to a drucker-prager failure surface, Theor. Appl. Fract. Mech., 121, Article 103555 pp. (2022)
[49] Olesch, D.; Kuhn, C.; Schlüter, A.; Müller, R., Adaptive numerical integration of exponential finite elements for a phase field fracture model, Comput. Mech., 67, 3, 811-821 (2021) · Zbl 1490.74109
[50] Sargado, J. M.; Keilegavlen, E.; Berre, I.; Nordbotten, J. M., A combined finite element-finite volume framework for phase-field fracture, Comput. Methods Appl. Mech. Engrg., 373, Article 113474 pp. (2021) · Zbl 1506.74365
[51] Seiler, M.; Linse, T.; Hantschke, P.; Kästner, M., An efficient phase-field model for fatigue fracture in ductile materials, Eng. Fract. Mech., 224, Article 106807 pp. (2020)
[52] Seleš, K.; Aldakheel, F.; Tonković, Z.; Sorić, J.; Wriggers, P., A general phase-field model for fatigue failure in brittle and ductile solids, Comput. Mech., 67, 5, 1431-1452 (2021) · Zbl 1468.74056
[53] Seleš, K.; Lesičar, T.; Tonković, Z.; Sorić, J., A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205, 370-386 (2019)
[54] Simoes, M.; Braithwaite, C.; Makaya, A.; Martínez-Pañeda, E., Modelling fatigue crack growth in shape memory alloys, Fatigue Fract. Eng. Mater. Struct., 45, 4, 1243-1257 (2022)
[55] Simoes, M.; Martínez-Pañeda, E., Phase field modelling of fracture and fatigue in shape memory alloys, Comput. Methods Appl. Mech. Engrg., 373, Article 113504 pp. (2021) · Zbl 1506.74022
[56] Song, J.; Zhao, L. G.; Qi, H.; Li, S.; Shi, D.; Huang, J.; Su, Y.; Zhang, K., Coupling of phase field and viscoplasticity for modelling cyclic softening and crack growth under fatigue, Eur. J. Mech. A Solids, 92, Article 104472 pp. (2022)
[57] Strobl, M.; Seelig, T., Phase field modeling of hertzian indentation fracture, J. Mech. Phys. Solids, 143 (2020)
[58] Tan, W.; Martínez-Pañeda, E., Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites, Compos. Sci. Technol., 202, Article 108539 pp. (2021)
[59] Tanné, E.; Li, T.; Bourdin, B.; Marigo, J. J.; Maurini, C., Crack nucleation in variational phase-field models of brittle fracture, J. Mech. Phys. Solids, 110, 80-99 (2018)
[60] Wu, J.-Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
[61] Wu, J.-y. Y.; Huang, Y.; Phu, V.; Nguyen, V. P., On the BFGS monolithic algorithm for the unified phase field damage theory, Comput. Methods Appl. Mech. Engrg., 360, Article 112704 pp. (2020) · Zbl 1441.74196
[62] Ye, J. Y.; Zhang, L. W., Damage evolution of polymer-matrix multiphase composites under coupled moisture effects, Comput. Methods Appl. Mech. Engrg., 388, Article 114213 pp. (2022) · Zbl 1507.74369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.