×

A generalised path-following solver for robust analysis of material failure. (English) Zbl 1498.74080

Summary: When analysing complex structures with advanced damage or material models, it is important to use a robust solution method in order to trace the full equilibrium path. In light of this, we propose a new path-following solver based on the integral of the rate of dissipation in each material point, for solving problems exhibiting large energy dissipating mechanisms. The method is a generalisation and unification of previously proposed dissipation based path-following solvers, and makes it possible to describe a wider range of dissipation mechanisms, such as large strain plasticity. Furthermore, the proposed method makes it possible to, in a straightforward way, combine the effects from multiple dissipation mechanisms in a simulation. The capabilities of the solver are demonstrated on four numerical examples, from which it can be concluded that the proposed method is both versatile and robust, and can be used in different research domains within computational structural mechanics and material science.

MSC:

74S99 Numerical and other methods in solid mechanics
74R05 Brittle damage
74R20 Anelastic fracture and damage
74K99 Thin bodies, structures

References:

[1] Nsiampa N, Ponthot J-P, Noels L (2008) Comparative study of numerical explicit schemes for impact problems. In: International Journal of Impact Engineering 35.12. Hypervelocity impact proceedings of the 2007 symposium, pp 1688-1694. doi:10.1016/j.ijimpeng.2008.07.003
[2] Belytschko, T.; Liu, V.; Moran, B.; Elkhodary, KI, Nonlinear finite elements for continua and structures (2014), New York: Wiley, New York · Zbl 1279.74002
[3] Wempner, GA, Discrete approximations related to nonlinear theories of solids, Int J Solids Struct, 7.11, 1581-1599 (1971) · Zbl 0222.73054 · doi:10.1016/0020-7683(71)90038-2
[4] Riks, E., An incremental approach to the solution of snapping and buckling problems, Int J Solids Struct, 15.7, 529-551 (1979) · Zbl 0408.73040 · doi:10.1016/0020-7683(79)90081-7
[5] Ramm, E.; Wunderlich, W.; Stein, E.; Bathe, K-J, Strategies for tracing the nonlinear response near limit points, Nonlinear finite element analysis in structural mechanics, 63-89 (1981), Berlin: Springer, Berlin · Zbl 0474.73043 · doi:10.1007/978-3-642-81589-8_5
[6] Crisfield, M., A fast incremental/iterative solution procedure that handles snap-through, Comput Struct, 13.1-3, 55-62 (1981) · Zbl 0479.73031 · doi:10.1016/0045-7949(81)90108-510.1016/0045-7949(81)90108-5
[7] Geers MGD (1999) Enhanced solution control for physically and geometrically non-linear problems. Part I|the subplane control approach. Int J Numer Methods Eng 46(2):177-204 (1999). 10.1002/(SICI)1097-0207(19990920)46:2<177::AID-NME668>3.0.CO;2-L · Zbl 0957.74034
[8] de Borst, R., Computation of post-bifurcation and post-failure behavior of strain-softening solids, Comput Struct, 25.2, 211-224 (1987) · Zbl 0603.73046 · doi:10.1016/0045-7949(87)90144-1
[9] Chen, Z.; Schreyer, HL, A numerical solution scheme for softening problems involving total strain control, Comput Struct, 37.6, 1043-1050 (1990) · doi:10.1016/0045-7949(90)90016-U
[10] Alfano, G.; Crisfield, MA, Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches, Int J Numer Meth Eng, 58.7, 999-1048 (2003) · Zbl 1032.74660 · doi:10.1002/NME.806
[11] Pohl, T.; Ramm, E.; Bischoff, M., Adaptive path following schemes for problems with softening, Finite Elem Anal Des, 86, 12-22 (2014) · doi:10.1016/j.finel.2014.02.005
[12] Gutiérrez, MA, Energy release control for numerical simulations of failure in quasi-brittle solids, Commun Numer Methods Eng, 20.1, 19-29 (2004) · Zbl 1047.74551 · doi:10.1002/cnm.649
[13] Verhoosel CV, Remmers JJC, Gutiérrez MA (2009) A dissipation-based arc-length method for robust simulation of brittle and ductile failure. Int J Numer Methods Eng 77.9:1290-1321. doi:10.1002/nme.2447 · Zbl 1156.74397
[14] Singh, N.; Verhoosel, CV; De Borst, R.; Van Brummelen, EH, A fracture-controlled pathfollowing technique for phase-field modeling of brittle fracture, Finite Elem Anal Des, 113, 14-29 (2016) · doi:10.1016/j.finel.2015.12.005
[15] May S, Vignollet J, de Borst R (2016) A new arc-length control method based on the rates of the internal and the dissipated energy. Eng Comput 33.1:100-115. doi:10.1108/EC-02-2015-0044
[16] Turon, A.; Camanho, PP; Costa, J.; Dávila, CG, A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mech Mater, 38.11, 1072-1089 (2006) · doi:10.1016/j.mechmat.2005.10.003
[17] Turon, A.; Camanho, P.; Costa, J.; Renart, J., Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness, Compos Struct, 92.8, 1857-1864 (2010) · doi:10.1016/j.compstruct.2010.01.012
[18] Ambati, M.; Gerasimov, T.; Lorenzis, LD, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput Mech, 55, 383-405 (2015) · Zbl 1398.74270 · doi:10.1007/s00466-014-1109-y
[19] O’Brien TK, Krueger R (2001) Analysis of ninety for characterization transverse tensile degree flexure of composite strength tests. In: Nasa Tm-2001-211227. NASATM-2001-211227ARL-TR-2568
[20] Kolluri M, Hoefnagels JPM, Van Dommelen JA, Geers MG (2014) Irreversible mixed mode interface delamination using a combined damage-plasticity cohesive zone enabling unloading. Int J Fract 185.1-2:77-95. doi:10.1007/s10704-013-9899-z
[21] Louisa Auth K, Brouzoulis J, Ekh M (2022) A fully coupled chemo-mechanical cohesive zone model for oxygen embrittlement of nickel-based superalloys. J Mech Phy Solids 104880. doi:10.1016/j.jmps.2022.104880
[22] Simo J (1998) Numerical analysis and simulation of plasticity. In: Numerical Methods for Solids (Part 3) Numerical methods for fluids (Part 1). Vol. 6. Handbook of numerical analysis. Elsevier, New York, pp 303-357. doi:10.1016/S1570-8659(98)80009-4 · Zbl 0905.00032
[23] Bellora, D.; Vescovini, R., Hybrid geometric-dissipative arc-length methods for the quasi-static analysis of delamination problems, Comput Struct, 175, 123-133 (2016) · doi:10.1016/j.compstruc.2016.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.