×

On the BFGS monolithic algorithm for the unified phase field damage theory. (English) Zbl 1441.74196

Summary: Despite the popularity in modeling complex and arbitrary crack configurations in solids, phase-field damage models suffer from burdensome computational cost. This issue arises largely due to the robust but inefficient alternating minimization (AM) or staggered algorithm usually employed to solve the coupled damage-displacement governing equations. Aiming to tackle this difficulty, we propose in this work for the first time to use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to solve in a monolithic manner the system of coupled governing equations, rather than the standard Newton one which is notoriously poor for problems involving non-convex energy functional. It is found that, the BFGS algorithm yields identical results to the AM/staggered solver, and is also robust for both brittle fracture and quasi-brittle failure with a single or multiple cracks. However, much less iterations are needed to achieve convergence. Furthermore, as the system matrix is less reformed per increment, the quasi-Newton monolithic algorithm is much more efficient than the AM/staggered solver. Representative numerical examples show that the saving in CPU time is about factor \(3 \sim 7\), and the larger the problem is, the more saving it gains. As the BFGS monolithic algorithm has been incorporated in many commercial software packages, it can be easily implemented and is thus attractive in the phase-field damage modeling of localized failure in solids.

MSC:

74R05 Brittle damage
65Z05 Applications to the sciences
74R10 Brittle fracture
Full Text: DOI

References:

[1] Ambati, M.; Gerasimov, T.; de Lorenzis, L., A review on phase-field models for brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383-405 (2015) · Zbl 1398.74270
[2] Wu, J. Y.; Nguyen, V. P.; Nguyen, C. T.; Sutula, D.; Sinaie, S.; Bordas, S., (Phase Field Modeling of Fracture. Phase Field Modeling of Fracture, Advances in Applied Mechancis: Fracture Mechanics: Recent Developments and Trends volume, vol. 53 (2019)), in press
[3] Francfort, G.; Marigo, J., Revisting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[4] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[5] Bourdin, B.; Francfort, G.; Marigo, J.-J., The variational approach to fracture (2008), Springer: Springer Berlin · Zbl 1425.74004
[6] Ambrosio, L.; Tortorelli, V. M., Approximation of functional depending on jumps by elliptic functional via t-convergence, Comm. Pure Appl. Math., 43, 8, 999-1036 (1990) · Zbl 0722.49020
[7] Aranson, I. S.; Kalatsky, V. A.; Vinokur, V. M., Continuum field description of crack propagation, Phys. Rev. Lett., 85, 118-121 (2000)
[8] Karma, A.; Kessler, D.; Levine, H., Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87, 118-121 (2001)
[9] Spatschek, R.; Brener, E.; Karma, A., Phase field modeling of crack propagation, Phil. Mag., 9, 75-95 (2011)
[10] Wu, J. Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure in solids, J. Mech. Phys. Solids, 103, 72-99 (2017)
[11] Wu, J. Y., A geometrically regularized gradient-damage model with energetic equivalence, Comput. Methods Appl. Mech. Engrg., 328, 612-637 (2018) · Zbl 1439.74032
[12] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022
[13] Pham, K.; Amor, H.; Marigo, J.-J.; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 618-652 (2011)
[14] Kuhn, C.; Schlüter, A.; Müller, R., On degradation functions in phase field fracture models, Comput. Mater. Sci., 108, 374-384 (2015)
[15] Borden, M. J.; Hughes, T. J.; Landis, C. M.; Anvari, A.; Lee, I. J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[16] Verhoosel, C. V.; de Borst, R., A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg., 96, 43-62 (2013) · Zbl 1352.74029
[17] Vignollet, J.; May, S.; de Borst, R.; Verhoosel, C. V., Phase-field model for brittle and cohesive fracture, Meccanica, 49, 2587-2601 (2014)
[18] May, S.; Vignollet, J.; de Borst, R., A numerical assessment of phase-field models for brittle and cohesive fracture: G-convergence and stress oscillations, Eur. J. Mech. A Solids, 52, 72-84 (2015) · Zbl 1406.74599
[19] Nguyen, T. T.; Yvonnet, J.; Zhu, Q.-Z.; Bornert, M.; Chateau, C., A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography, Comput. Methods Appl. Mech. Engrg., 312, 567-595 (2016) · Zbl 1439.74243
[20] Conti, S.; Focardi, M.; Iurlano, F., Phase field approximation of cohesive fracture models, Ann. Inst. Henri Poincare C Non Linear Anal., 33, 4, 1033-1067 (2015) · Zbl 1345.49012
[21] Focardi, M.; Iurlano, F., Numerical insight of a variational smeared approach to cohesive fracture, J. Mech. Phys. Solids, 98, 156-171 (2017)
[22] Wu, J. Y.; Nguyen, V. P., A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, 20-42 (2018)
[23] Barenblatt, G. I., The formation of equilibrium cracks during brittle fracture. general ideas and hypotheses. axially-symmetric cracks, J. Appl. Math. Mech., 23, 622-636 (1959) · Zbl 0095.39202
[24] Cornelissen, H.; Hordijk, D.; Reinhardt, H., Experimental determination of crack softening characteristics of normalweight and lightweight concrete, Heron, 31, 2, 45-56 (1986)
[25] Mandal, T. K.; Nguyen, V. P.; Wu, J. Y., Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture, Eng. Fract. Mech., 217, 106532 (2019)
[26] Wu, J. Y., Numerical implementation of non-standard phase-field damage models, Comput. Methods Appl. Mech. Engrg., 340, 767-797 (2018) · Zbl 1440.74043
[27] Wu, J. Y.; Qiu, J. F.; Nguyen, V. P.; Zhuang, L. J.; Tushar, K. M., Computational modeling of localized failure in solids: XFEM vs PF-CZM, Comput. Methods Appl. Mech. Engrg., 345, 618-643 (2019) · Zbl 1440.74349
[28] Nguyen, V. P.; Wu, J. Y., Modeling dynamic fracture of solids using a phase-field regularized cohesive zone model, Comput. Methods Appl. Mech. Engrg., 340, 1000-1022 (2018) · Zbl 1440.74362
[29] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[30] Artina, M.; Fornasier, M.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J. Sci. Comput., 37, 4, B633-B659 (2015) · Zbl 1325.74134
[31] Ferro, N.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation for crack propagation induced by a thermal shock in 2D, Comput. Methods Appl. Mech. Engrg., 331, 138-158 (2018) · Zbl 1439.74348
[32] Micheletti, S.; Perotto, S.; Signorini, M., Anisotropic mesh adaptation for the generalized Ambrosio-Tortorelli functional with application to brittle fracture, Comput. Math. Appl., 75, 6, 2134-2152 (2018) · Zbl 1409.74045
[33] Singh, N.; Verhoosel, C.; de Borst, R.; van Brummelen, E., A fracture-controlled path-following techniques for phase-field modeling of brittle fracture, Finite Elem. Anal. Des., 113, 14-29 (2015)
[34] May, S.; Vignollet, J.; de Borst, R., A new arc-length control method based on the rates of the internal and the dissipated energy, Eng. Comput., 33, 1, 100-115 (2016)
[35] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg., 312, 276-303 (2016) · Zbl 1439.74349
[36] Wick, T., Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput. Methods Appl. Mech. Engrg., 325, 577-611 (2017) · Zbl 1439.74375
[37] Farrell, P.; Maurini, C., Linear and nonlinear solvers for variational phase-field models of brittle fracture, Internat. J. Numer. Methods Engrg., 109, 5, 648-667 (2017) · Zbl 07874318
[38] Ren, H. L.; Zhuang, X. Y.; Anitescu, C.; Rabczuk, T., An explicit phase field method for brittle dynamic fracture, Comput. Struct., 217, 45-56 (2019)
[39] Wu, J. Y.; Nguyen, V. P.; Zhou, H.; Huang, Y., A variationally consistent phase-field anisotropic damage model for fracture, Comput. Methods Appl. Mech. Engrg. (2019), 358: 112629 · Zbl 1441.74220
[40] Mandal, T. K.; Nguyen, V. P.; Heidarpour, A., Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study, Eng. Fract. Mech., 207, 48-67 (2019)
[41] Tanné, E.; Li, T.; Bourdin, B.; Marigo, J.-J.; Maurini, C., Crack nucleation in variational phase-field models of brittle fracture, J. Mech. Phys. Solids, 110, 80-99 (2018)
[42] Feng, D. C.; Wu, J. Y., Phase-field regularized cohesize zone model (CZM) and size effect of concrete, Eng. Fract. Mech., 197, 66-79 (2018)
[43] Benson, S. J.; Munson, T. S., Flexible complementarity solvers for large-scale applications, Optim. Methods Softw., 21, 155-168 (2006) · Zbl 1181.90255
[44] Amor, H.; Marigo, J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[45] Wheeler, M. F.; Wick, T.; Wollner, W., An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85 (2014) · Zbl 1296.65170
[46] Gerasimov, T.; De Lorenzis, L., On penalization in variational phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 354, 990-1026 (2019) · Zbl 1441.74203
[47] Lorentz, E.; Godard, V., Gradient damage models: Towards full-scale computations, Comput. Methods Appl. Mech. Engrg., 200, 1927-1944 (2011) · Zbl 1228.74006
[48] Li, T.; Marigo, J.-J.; Guilbaud, D.; Potapov, S., Gradient damage modeling of brittle fracture in an explicit dynamics context, Internat. J. Numer. Methods Engrg., 108, 11, 1381-1405 (2016) · Zbl 07870042
[49] Hughes, T., The Finite Element Method. Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications Inc.: Dover Publications Inc. Mineaola, New York · Zbl 1191.74002
[50] Msekh, M. A.; Sargado, J. M.; Jamshidian, M.; Areias, P. M.; Rabczuk, T., Abaqus implementation of phase-field model for brittle fracture, Comput. Mater. Sci., 96, Part B, 472-484 (2015)
[51] Liu, G.; Li, Q.; Msekh, M. A.; Zuo, Z., Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., 121, 35-47 (2016)
[52] Molnár, G.; Gravouil, A., 2D and 3D abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., 130, 27-38 (2017)
[53] Zhang, P.; Hu, X.; Wang, X.; Yao, W., An iteration scheme for phase field model for cohesive fracture and its implementation in abaqus, Eng. Fract. Mech., 204, 268-287 (2018)
[54] Seleš, K.; Lesičar, T.; Tonković, Z.; Sorić, J., A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205, 370-386 (2019)
[55] Matthies, H.; Strang, G., The solution of nonlinear finite element equations, Internat. J. Numer. Methods Engrg., 14, 1613-1626 (1979) · Zbl 0419.65070
[56] Riks, E., An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 7, 529-551 (1979) · Zbl 0408.73040
[57] de Borst, R., Computation of post-bifurcation and post-failure behavior of strain-softening solids, Comput. Struct., 25, 211-224 (1987) · Zbl 0603.73046
[58] Wang, Z.; Shedbale, A.; Kumar, S.; Poh, L. H., Localizing gradient damage model with micro inertia effect for dynamic fracture, Comput. Methods Appl. Mech. Engrg., 355, 492-512 (2019) · Zbl 1441.74218
[59] ABAQUS, I., ABAQUS 6.3 Analysis User’s Manual (2002)
[60] Rots, J., Computational Modeling of Concrete Fracture (1988), Delft University of Technology: Delft University of Technology Netherlands., (Ph.D. thesis)
[61] Winkler, B., Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton (2001), Universität Innsbruck: Universität Innsbruck Austria, (Ph.D. thesis)
[62] Dumstorff, P.; Meschke, G., Crack propagation criteria in the framework of x-FEM-based structural analyses, Int. J. Numer. Anal. Methods Geomech., 31, 239-259 (2007) · Zbl 1159.74038
[63] Unger, J.; Eckardt, S.; Könke, C., Modelling of cohesive crack growth in concrete structures with the extended finite element method, Comput. Methods Appl. Mech. Engrg., 196, 4087-4100 (2007) · Zbl 1173.74387
[64] Cervera, M.; Barbat, G.; Chiumenti, M., Finite element modeling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy, Comput. Mech., 60, 5, 767-796 (2017) · Zbl 1387.74099
[65] Nooru-Mohamed, M., Mixed-Mode Fracture of Concrete: an Experimental Approach (1992), Delft University of Technology, (Ph.D. thesis)
[66] Zhang, Y.; Lackner, R.; Zeiml, M.; Mang, H., Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations, Comput. Methods Appl. Mech. Engrg., 287, 335-366 (2015) · Zbl 1423.74851
[67] Peerlings, R.; de Borst, R.; Brekelmans, W.; de Vree, J., Gradient-enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., 39, 3391-3403 (1996) · Zbl 0882.73057
[68] Poh, L.; Sun, G., Localizing gradient damage model with decreasing interactions, Internat. J. Numer. Methods Engrg., 110, 503-522 (2017)
[69] Sun, G.; Poh, L. H., Homogenization of intergranular fracture towards a transient gradient damage model, J. Mech. Phys. Solids, 95, 374-392 (2016)
[70] Martínez-Pañeda, E.; Golahmar, A.; Niordson, C. F., A phase field formulation for hydrogen assisted cracking, Comput. Methods Appl. Mech. Engrg., 342, 742-761 (2018) · Zbl 1440.82005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.