×

Geometric inequalities involving three quantities in warped product manifolds. (English) Zbl 1525.52003

In the first part of the work, the authors establish a sharp geometric inequality involving the \(k\)-th boundary momentum \(\int_\Sigma \lambda(r)^k \,d\mu\), area \(|\Sigma|\), and weighted volume\(\int_\Omega \lambda^{k-1} \lambda' \,dv\) of a smooth bounded domain \(\Omega\) enclosed by a hypersurface \(\Sigma\) (with some additional convexity assumptions) in a warped product manifold \(\overline{M}^{n+1}\), with \(\mathbb{R}^{n+1}\), \(\mathbb{H}^{n+1}\), \(\mathbb{S}^{n+1}\) as explicit examples. The obtained inequality is used to prove the Weinstock inequality for the first nonzero Steklov eigenvalue for bounded domains with star-shaped mean convex boundary. This solves a problem posed in [D. Bucur et al., J. Differ. Geom. 118, No. 1, 1–21 (2021; Zbl 1468.35038)].
In the second part of the work, the authors establish a sharp geometric inequality involving the weighted curvature integral \(\int_\Sigma \Phi E_k \, d\mu\) and two quermassintegrals \(W_{k-1}(\Omega)\), \(W_{k}(\Omega)\), under related assumptions on \(\Omega\), \(\Sigma\), where, in the particular case of \(\mathbb{R}^{n+1}\), \(\Phi(r)=r^2/2\).

MSC:

52A39 Mixed volumes and related topics in convex geometry
53E10 Flows related to mean curvature
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
51M16 Inequalities and extremum problems in real or complex geometry
52A40 Inequalities and extremum problems involving convexity in convex geometry

Citations:

Zbl 1468.35038

References:

[1] Alvino, A.; Brock, F.; Chiacchio, F.; Mercaldo, A.; Posteraro, M. R., Some isoperimetric inequalities on \(\mathbb{R}^N\) with respect to weights \(| x |^\alpha \), J. Math. Anal. Appl., 451, 1, 280-318 (2017) · Zbl 1367.49005
[2] Andrews, B.; Chen, X.; Wei, Y., Volume preserving flow and Alexandrov-Fenchel type inequalities in hyperbolic space, J. Eur. Math. Soc., 23, 2467-2509 (2021) · Zbl 1482.53116
[3] Andrews, B.; Hu, Y.; Li, H., Harmonic mean curvature flow and geometric inequalities, Adv. Math., 375, Article 107393 pp. (2020), 28 pp. · Zbl 1456.53075
[4] Barbosa, J.; Colares, A. G., Stability of hypersurfaces with constant r-mean curvature, Ann. Glob. Anal. Geom., 15, 3, 277-297 (1997) · Zbl 0891.53044
[5] Betta, M. F.; Brock, F.; Mercaldo, A.; Posteraro, M. R., A weighted isoperimetric inequality and applications to symmetrization, J. Inequal. Appl., 4, 3, 215-240 (1999) · Zbl 1029.26018
[6] Betta, M. F.; Brock, F.; Mercaldo, A.; Posteraro, M. R., Weighted isoperimetric inequalities on \(\mathbb{R}^n\) and applications to rearrangements, Math. Nachr., 281, 4, 466-498 (2008) · Zbl 1144.26030
[7] Borell, C., The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30, 2, 207-216 (1975) · Zbl 0292.60004
[8] Brendle, S., Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci., 117, 247-269 (2013) · Zbl 1273.53052
[9] S. Brendle, P. Guan, J. Li, An inverse curvature type hypersurface flow in space forms, Preprint, 2018.
[10] Brendle, S.; Hung, P.-K.; Wang, M.-T., A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Commun. Pure Appl. Math., 69, 1, 124-144 (2016) · Zbl 1331.53078
[11] Brendle, S.; Wang, M.-T., A Gibbons-Penrose inequality for surfaces in Schwarzschild spacetime, Commun. Math. Phys., 330, 1, 33-43 (2014) · Zbl 1306.83001
[12] Bucur, D.; Ferone, V.; Nitsch, C.; Trombetti, C., Weinstock inequality in higher dimensions, J. Differ. Geom., 118, 1-21 (2021) · Zbl 1468.35038
[13] Cabré, X.; Ros-Oton, X., Sobolev and isoperimetric inequalities with monomial weights, J. Differ. Equ., 255, 11, 4312-4336 (2013) · Zbl 1293.46018
[14] Caffarelli, L.; Kohn, R.; Nirenberg, L., First order interpolation inequalities with weights, Compos. Math., 53, 3, 259-275 (1984) · Zbl 0563.46024
[15] Canete, A.; Miranda, M.; Vittone, D., Some isoperimetric problems in planes with density, J. Geom. Anal., 20, 2, 243-290 (2010) · Zbl 1193.49050
[16] Catrina, F.; Wang, Z. Q., On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Commun. Pure Appl. Math., 54, 2, 229-258 (2001) · Zbl 1072.35506
[17] Chen, M.; Sun, J., Alexandrov-Fenchel type inequalities in the sphere, Adv. Math., 397, Article 108203 pp. (2022), 25 pp. · Zbl 1498.53085
[18] Dambrine, M.; Kateb, D.; Lamboley, J., An extremal eigenvalue problem for the Wentzell-Laplace operator, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 2, 409-450 (2016) · Zbl 1347.35186
[19] de Lima, L. L.; Girão, F., An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality, Ann. Henri Poincaré, 17, 4, 979-1002 (2016) · Zbl 1337.83048
[20] Ge, Y.; Wang, G.; Wu, J., Hyperbolic Alexandrov-Fenchel Quermassintetral inequalities II, J. Differ. Geom., 98, 237-260 (2014) · Zbl 1301.53077
[21] Gerhardt, C., Flow of nonconvex hypersurfaces into spheres, J. Differ. Geom., 32, 1, 299-314 (1990) · Zbl 0708.53045
[22] Gerhardt, C., Inverse curvature flows in hyperbolic space, J. Differ. Geom., 89, 3, 487-527 (2011) · Zbl 1252.53078
[23] Gerhardt, C., Curvature flows in the sphere, J. Differ. Geom., 100, 2, 301-347 (2015) · Zbl 1395.53073
[24] Girão, F.; Pinheiro, N. M., An Alexandrov-Fenchel-type inequality for hypersurfaces in the sphere, Ann. Glob. Anal. Geom., 52, 4, 413-424 (2017) · Zbl 1384.51030
[25] Girão, F.; Rodrigues, D., Weighted geometric inequalities for hypersurfaces in sub-static manifolds, Bull. Lond. Math. Soc., 52, 1, 121-136 (2020) · Zbl 1443.52005
[26] Guan, P.; Li, J., The quermassintegral inequalities for k-convex starshaped domains, Adv. Math., 221, 1725-1732 (2009) · Zbl 1170.53058
[27] Guan, P.; Li, J., A mean curvature type flow in space forms, Int. Math. Res. Not., 13, 4716-4740 (2015) · Zbl 1342.53090
[28] Hu, Y.; Li, H., Geometric inequalities for static convex domains in hyperbolic space, Trans. Am. Math. Soc., 375, 8, 5587-5615 (2022) · Zbl 1511.53009
[29] Hu, Y.; Li, H.; Wei, Y., Locally constrained curvature flows and geometric inequalities in hyperbolic space, Math. Ann., 382, 3-4, 1425-1474 (2022) · Zbl 1495.53100
[30] Kwong, K.-K., An extension of Hsiung-Minkowski formulas and some applications, J. Geom. Anal., 26, 1, 1-23 (2016) · Zbl 1335.53071
[31] Kwong, K.-K.; Miao, P., A new monotone quantity along the inverse mean curvature flow in \(\mathbb{R}^n\), Pac. J. Math., 267, 2, 417-422 (2014) · Zbl 1295.53074
[32] Kwong, K.-K.; Miao, P., Monotone quantities involving a weighted \(\sigma_k\) integral along inverse curvature flows, Commun. Contemp. Math., 17, 5, Article 1550014 pp. (2015) · Zbl 1325.53086
[33] Kwong, K.-K.; Wei, Y.; Wheeler, G.; Wheeler, V.-M., On an inverse curvature flow in two-dimensional space forms, Math. Ann., 384, 1-2, 1-24 (2022)
[34] Makowski, M.; Scheuer, J., Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere, Asian J. Math., 20, 869-892 (2016) · Zbl 1371.35101
[35] Rosales, C.; Cañete, A.; Bayle, V.; Morgan, F., On the isoperimetric problem in Euclidean space with density, Calc. Var. Partial Differ. Equ., 31, 1, 27-46 (2008) · Zbl 1126.49038
[36] Santaló, L. A., Integral Geometry and Geometric Probability, Cambridge Math. Library (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1116.53050
[37] Scheuer, J., Inverse curvature flows in Riemannian warped products, J. Funct. Anal., 276, 4, 1097-1144 (2019) · Zbl 1423.35109
[38] Scheuer, J.; Xia, C., Locally constrained inverse curvature flows, Trans. Am. Math. Soc., 372, 10, 6771-6803 (2019) · Zbl 1427.53111
[39] Schneider, R., Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 151 (2014), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1287.52001
[40] Solanes, G., Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces, Trans. Am. Math. Soc., 358, 3, 1105-1115 (2005) · Zbl 1082.53075
[41] Urbas, J., On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z., 205, 355-372 (1990) · Zbl 0691.35048
[42] Wang, G.; Xia, C., Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space, Adv. Math., 259, 532-556 (2014) · Zbl 1292.52008
[43] Wei, Y.; Zhou, T., New weighted geometric inequalities for hypersurfaces in space forms, Bull. Lond. Math. Soc., 55, 263-281 (2023) · Zbl 1529.53086
[44] Weinstock, R., Inequalities for a Classical Eigenvalue Problem, Department of Math, 37 (1954), Stanford Univ., Tech. Rep.
[45] Weinstock, R., Inequalities for a classical eigenvalue problem, J. Ration. Mech. Anal., 3, 745-753 (1954) · Zbl 0056.09801
[46] Zhou, H., Inverse mean curvature flows in warped product manifolds, J. Geom. Anal., 28, 2, 1749-1772 (2018) · Zbl 1393.53069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.