×

Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces. (English) Zbl 1082.53075

\(M^n(k)\) denotes an \(n\)-dimensional simply connected Riemannian manifold, of constant sectional curvature \(k\), \(S\) a compact immersed hypersurface of \(M^n(k)\), \(Q\) a compact domain in \(M^n(k)\) with smooth boundary, \(K\) the total curvature of \(S\), \(K_i\) the \(i\)th mean curvature of \(S\), \(\chi\) the Euler characteristic of \(S\). \({\mathcal L}_{n-2}\) the space of \((n- 2)\)-dimensional totally geodesic submanifolds of \(M^n(k)\), \({\mathcal L}_{n-2}\) is a homogeneous space of the isometry group of \(M^n(k)\), with a unique invariant measure \(dL\).
The main result is theorem 1. If \(Q\subset M^n(k)\) is a compact domain with smooth boundary, then \[ \int_{\partial Q} K(x)\,dx= \text{vol}(\mathbb{S}^{n-1})\chi(Q)- k{2(n- 1)\over \text{vol}(\mathbb{S}^{n-2})} \int_{{\mathcal L}_{n-2}}\chi(L\cap Q)\,dL. \] If \(S\) is a compact immersed hypersurface and \(n\) is odd, then \[ \int_S K(x)\,dx= {\text{vol}(\mathbb{S}^{n-1})\over 2} \chi(S)- k{n-1\over \text{vol}(\mathbb{S}^{n-2})} \int_{{\mathcal L}_{n-2}}\chi(L\cap Q)\,dL. \] From this theorem one can obtain \[ \int_S K(x)\,dx= \text{vol}(\mathbb{S}^{n-1})\chi(Q)- \sum_i K_{n-2i-1}(x)\,dx, \]
\[ \int_{\partial Q} K(x)\,dx= \text{vol}(\mathbb{S}^{n-1})\chi(Q)- \sum_i c_k k^i\int_{\partial Q} K_{n-2i-1}(x)\,dx- ck^{n/2} V. \]
Reviewer: A. Neagu (Iaşi)

MSC:

53C65 Integral geometry
Full Text: DOI

References:

[1] Shiing-shen Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747 – 752. · Zbl 0060.38103 · doi:10.2307/1969302
[2] Shiing-shen Chern, On the curvatura integra in a Riemannian manifold, Ann. of Math. (2) 46 (1945), 674 – 684. · Zbl 0060.38104 · doi:10.2307/1969203
[3] Daniel Henry Gottlieb, All the way with Gauss-Bonnet and the sociology of mathematics, Amer. Math. Monthly 103 (1996), no. 6, 457 – 469. · Zbl 0966.53003 · doi:10.2307/2974712
[4] H. Hopf, Über die curvatura integra geschlossener hyperflächen, Math. Annalen 95 (1925), 340-376. · JFM 51.0566.02
[5] -, Vektorfelder in \(n\)-dimensionalen manningfaltigkeiten, Math. Annalen 96 (1927), 225-250.
[6] John W. Milnor, Topology from the differentiable viewpoint, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Based on notes by David W. Weaver; Revised reprint of the 1965 original. · Zbl 1025.57002
[7] M. Morse, Singular points of vector fields under general boundary conditions, Amer. J. Math. 51 (1929), 165-178. · JFM 55.0972.02
[8] Robert C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973), 465 – 477. · Zbl 0277.53030
[9] Luis A. Santaló, Integral geometry and geometric probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac; Encyclopedia of Mathematics and its Applications, Vol. 1. · Zbl 0342.53049
[10] Eberhard Teufel, Eine differentialtopologische Berechnung der totalen Krümmung und Totalen Absolutkrümmung in der sphärischen Differentialgeometrie, Manuscripta Math. 31 (1980), no. 1-3, 119 – 147 (German, with English summary). , https://doi.org/10.1007/BF01303271 Eberhard Teufel, Anwendungen der differentialtopologischen Berechnung der totalen Krümmung und totalen Absolutkrümmung in der sphärischen Differentialgeometrie, Manuscripta Math. 32 (1980), no. 3-4, 239 – 262 (German, with English summary). · Zbl 0446.53043 · doi:10.1007/BF01299604
[11] E. Teufel, Integral geometry and projection formulas in spaces of constant curvature, Abh. Math. Sem. Univ. Hamburg 56 (1986), 221 – 232. · Zbl 0617.53061 · doi:10.1007/BF02941517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.