×

A Gibbons-Penrose inequality for surfaces in Schwarzschild spacetime. (English) Zbl 1306.83001

In the present work the authors extend the Gibbons-Penrose inequality, which holds for spacelike 2-surfaces in Minkowski spacetime, for the more general case of a Schwarzschild spacetime. They prove that the extended inequality is true in four important situations.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
53Z05 Applications of differential geometry to physics
83C15 Exact solutions to problems in general relativity and gravitational theory
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.

References:

[1] Bray H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177-267 (2001) · Zbl 1039.53034
[2] Brendle S.: Constant mean curvature surfaces in warped product manifolds. Publications Mathématiques de l’IHÉS 117, 247-269 (2013) · Zbl 1273.53052 · doi:10.1007/s10240-012-0047-5
[3] Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold ( arxiv:1209.0669) · Zbl 1039.53034
[4] Gibbons, G.W.: Ph.D. thesis, Cambridge University (1973) · Zbl 1055.53052
[5] Gibbons G.W.: Collapsing shells and the isoperimetric inequality for black holes. Class. Quantum Grav. 14, 2905-2915 (1997) · Zbl 0887.53064 · doi:10.1088/0264-9381/14/10/016
[6] Guan P., Li J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221, 1725-1732 (2009) · Zbl 1170.53058 · doi:10.1016/j.aim.2009.03.005
[7] Huisken, G.: in preparation · Zbl 0887.53064
[8] Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353-437 (2001) · Zbl 1055.53052
[9] Mars, M.: Present status of the Penrose inequality. Class. Quantum Grav. 26, 193001, 59 pp (2009) · Zbl 1178.83002
[10] Mars M., Soria A.: On the Penrose inequality for dust null shells in the Minkowski spacetime of arbitrary dimension. Class. Quantum Grav. 29, 135005 (2012) · Zbl 1248.83005 · doi:10.1088/0264-9381/29/13/135005
[11] Penrose R.: Naked singularities. Ann. New York Acad. Sci. 224, 125-134 (1973) · Zbl 0925.53023 · doi:10.1111/j.1749-6632.1973.tb41447.x
[12] Tod K.P.: Penrose quasilocal mass and the isoperimetric inequality for static black holes. Class Quantum Grav. 2, L65-L68 (1985) · Zbl 0575.53077 · doi:10.1088/0264-9381/2/4/001
[13] Tod K.P.: More on Penrose’s quasilocal mass. Class Quantum Grav. 3, 1169-1189 (1986) · Zbl 0602.53053 · doi:10.1088/0264-9381/3/6/016
[14] Tod K.P.: The hoop conjecture and the Gibbons-Penrose construction of trapped surfaces. Class. Quantum Grav. 9(6), 1581-1591 (1992) · Zbl 0761.53045 · doi:10.1088/0264-9381/9/6/014
[15] Wang, M.-T.: Quasilocal mass and surface Hamiltonian in spacetime. (arxiv:1211.1407) · Zbl 1303.83008
[16] Wang M.-T., Yau S.-T.: Quasilocal mass in general relativity. Phys. Rev. Lett. 102(2), 021101 (2009) · doi:10.1103/PhysRevLett.102.021101
[17] Wang M.-T., Yau S.-T.: Isometric embeddings into the Minkowski space and new quasi-local mass. Commun. Math. Phys. 288(3), 919-942 (2009) · Zbl 1195.53039 · doi:10.1007/s00220-009-0745-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.