×

Gradient estimates for the Schrödinger potentials: convergence to the Brenier map and quantitative stability. (English) Zbl 1525.49033

Summary: We show convergence of the gradients of the Schrödinger potentials to the (uniquely determined) gradient of Kantorovich potentials in the small-time limit under general assumptions on the marginals, which allow for unbounded densities and supports. Furthermore, we provide novel quantitative stability estimates for the optimal values and optimal couplings for the Schrödinger problem (SP), that we express in terms of a negative order weighted homogeneous Sobolev norm. The latter encodes the linearized behavior of the 2-Wasserstein distance between the marginals. The proofs of both results highlight for the first time the relevance of gradient bounds for Schrödinger potentials, that we establish here in full generality, in the analysis of the short-time behavior of Schrödinger bridges. Finally, we discuss how our results translate into the framework of quadratic Entropic Optimal Transport, that is a version of SP more suitable for applications in machine learning and data science.

MSC:

49Q22 Optimal transportation
60E15 Inequalities; stochastic orderings
34K20 Stability theory of functional-differential equations
47D07 Markov semigroups and applications to diffusion processes
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] Schrödinger, E., La théorie relativiste de l’électron et l’ interprétation de la mécanique quantique, Ann. Inst Henri Poincaré, 2, 269-310 (1932) · JFM 58.0933.03
[2] Mikami, T., Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes, Probab. Theory Relat. Fields, 129, 2, 245-260 (2004) · Zbl 1061.58034 · doi:10.1007/s00440-004-0340-4
[3] Gentil, I.; Léonard, C.; Ripani, L., Dynamical aspects of the generalized Schrödinger problem via Otto calculus-A heuristic point of view, Rev. Mat. Iberoam, 36, 4, 1071-1112 (2020) · Zbl 1462.37009 · doi:10.4171/rmi/1159
[4] Peyré, G.; Cuturi, M., Computational optimal transport, FNT in Machine Learning, 11, 5-6, 355-607 (2019) · Zbl 1475.68011 · doi:10.1561/2200000073
[5] Chen, Y.; Georgiou, T. T.; Pavon, M., Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schrodinger bridge, SIAM Rev, 63, 2, 249-313 (2021) · Zbl 1465.49016 · doi:10.1137/20M1339982
[6] Benamou, J.-D., Optimal transportation, modelling and numerical simulation, Acta Numer., 30, 249-325 (2021) · Zbl 1519.65013 · doi:10.1017/S0962492921000040
[7] Léonard, C., Girsanov Theory under a Finite Entropy Condition, 429-465 (2012), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1253.60051
[8] Léonard, C., A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Cont. Dyn. Syst, 34, 4, 1533-1574 (2014) · Zbl 1277.49052 · doi:10.3934/dcds.2014.34.1533
[9] Brenier, Y., Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math, 44, 4, 375-417 (1991) · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[10] De Philippis, G.; Figalli, A., The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc, 51, 4, 527-580 (2014) · Zbl 1515.35005 · doi:10.1090/S0273-0979-2014-01459-4
[11] Conforti, G., A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost, Probab. Theory Relat. Fields, 174, 1-2, 1-47 (2019) · Zbl 1481.60152 · doi:10.1007/s00440-018-0856-7
[12] Tamanini, L., A generalization of Costa’s entropy power inequality, IEEE Trans. Inform. Theory, 68, 7, 4224-4229 (2022) · Zbl 1505.94029 · doi:10.1109/TIT.2022.3159132
[13] Clerc, G.; Conforti, G.; Gentil, I., On the variational interpretation of local logarithmic Sobolev inequalities, Ann. Fac. Sci. Tolouse (2020)
[14] Nutz, M., Introduction to entropic optimal transport (2021)
[15] Bakry, D.; Gentil, I.; Ledoux, M., Analysis and Geometry of Markov Diffusion Operators,, 348 (2013), Switzerland: Springer Science & Business Media
[16] Figalli, A., Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal, 39, 1, 126-137 (2007) · Zbl 1132.28322 · doi:10.1137/060665555
[17] Figalli, A.; Gigli, N., Local semiconvexity of Kantorovich potentials on non-compact manifolds, Esaim: Cocv, 17, 3, 648-653 (2011) · Zbl 1228.49047 · doi:10.1051/cocv/2010011
[18] Léonard, C., From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal., 262, 4, 1879-1920 (2012) · Zbl 1236.49088 · doi:10.1016/j.jfa.2011.11.026
[19] Adams, S.; Dirr, N.; Peletier, M. A.; Zimmer, J., From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage, Commun. Math. Phys, 307, 3, 791-815 (2011) · Zbl 1267.60106 · doi:10.1007/s00220-011-1328-4
[20] Erbar, M.; Maas, J.; Renger, M., From large deviations to Wasserstein gradient flows in multiple dimensions, Electron. Commun. Probab, 20, none, 1-12 (2015) · Zbl 1333.35294 · doi:10.1214/ECP.v20-4315
[21] Pal, S. (2019). On the difference between entropic cost and the optimal transport cost. Preprint, arXiv:1905.12206.
[22] Chizat, L.; Roussillon, P.; Léger, F.; Vialard, F.-X.; Peyré, G., Faster Wasserstein distance estimation with the Sinkhorn divergence, Adv. Neural Inform. Process. Syst, 33, 2257-2269 (2020)
[23] Carlier, G., Pegon, P., Tamanini, L. (2022). Convergence rate of general entropic optimal transport costs. Preprint, arXiv:2206.03347. · Zbl 1514.49022
[24] Bernton, E.; Ghosal, P.; Nutz, M., Entropic optimal transport: Geometry and large deviations, Duke Math. J (2022) · Zbl 1503.49036
[25] Nutz, M.; Wiesel, J., Entropic optimal transport: Convergence of potentials, Probab. Theory Relat. Fields, 184, 1-2, 401-424 (2022) · Zbl 1504.90095 · doi:10.1007/s00440-021-01096-8
[26] Norris, J. R., Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds, Acta Math, 179, 1, 79-103 (1997) · Zbl 0912.58041 · doi:10.1007/BF02392720
[27] Pooladian, A.-A., Niles-Weed, J. (2021). Entropic estimation of optimal transport maps. Preprint, arXiv:2109.12004.
[28] Peyre, R., Comparison between \(####\) distance and \(####\) norm, and Localisation of Wasserstein dinstance, ESAIM: Control Optim. Calculus Variat, 24, 4, 1489-1501 (2018) · Zbl 1415.49031
[29] Villani, C., Topics in Optimal Transportation, Volume 58 (2003), Rhode Island, PR: American Mathematical Society · Zbl 1106.90001
[30] Ghosal, P., Nutz, M., Bernton, E. (2021). Stability of port and Schrödinger Bridges. Preprint, arXiv:2106.03670. · Zbl 1497.90148
[31] Carlier, G.; Laborde, M., A differential approach to the multi-marginal schrödinger system, SIAM J. Math. Anal, 52, 1, 709-717 (2020) · Zbl 1436.49058 · doi:10.1137/19M1253800
[32] Deligiannidis, G., De Bortoli, V., Doucet, A. (2021). Quantitative uniform stability of the iterative proportional fitting procedure. Preprint, arXiv:2108.08129.
[33] Eckstein, S., Nutz, M. (2021). Quantitative stability of regularized optimal transport and convergence of Sinkhorn’s algorithm. Preprint, arXiv:2110.06798. · Zbl 1507.90127
[34] Nutz, M., Wiesel, J. (2022). Stability of Schrödinger potentials and convergence of Sinkhorn’s algorithm. Preprint, arXiv:2201.10059. · Zbl 1518.90069
[35] Conforti, G.; Tamanini, L., A formula for the time derivative of the entropic cost and applications, J. Funct. Anal, 280, 11, 108964 (2021) · Zbl 1462.35476 · doi:10.1016/j.jfa.2021.108964
[36] Backhoff, J.; Conforti, G.; Gentil, I.; Léonard, C., The mean field Schrödinger problem: Ergodic behavior, entropy estimates and functional inequalities, Probab. Theory Relat. Fields, 178, 1-2, 475-530 (2020) · Zbl 1453.91021 · doi:10.1007/s00440-020-00977-8
[37] Chiarini, A., Conforti, G., Greco, G., Ren, Z. (2021). Entropic turnpike estimates for the kinetic schrödinger problem. Preprint, arXiv:2108.09161. · Zbl 1505.82044
[38] Gigli, N.; Tamanini, L., Second order differentiation formula on \(####\) spaces, J. Eur. Math. Soc, 23, 5, 1727-1795 (2021) · Zbl 1478.53079 · doi:10.4171/JEMS/1042
[39] Jiang, R.; Li, H.; Zhang, H., Heat kernel bounds on metric measure spaces and some applications, Potential Anal, 44, 3, 601-627 (2016) · Zbl 1339.53043 · doi:10.1007/s11118-015-9521-2
[40] Wang, F.-Y., Equivalent semigroup properties for the curvature-dimension condition, Bull. Sci. Math, 135, 6-7, 803-815 (2011) · Zbl 1230.60083 · doi:10.1016/j.bulsci.2011.07.005
[41] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J, 163, 7, 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605
[42] Hamilton, R. S., A matrix Harnack estimate for the heat equation, Comm. Anal. Geom, 1, 1, 113-126 (1993) · Zbl 0799.53048 · doi:10.4310/CAG.1993.v1.n1.a6
[43] Kotschwar, B. L., Hamilton’s gradient estimate for the heat kernel on complete manifolds, Proc. Amer. Math. Soc, 135, 9, 3013-3019 (2007) · Zbl 1127.58021 · doi:10.1090/S0002-9939-07-08837-5
[44] Jiang, R.; Zhang, H., Hamilton’s gradient estimates and a monotonicity formula for heat flows on metric measure spaces, Nonlinear Anal, 131, 32-47 (2016) · Zbl 1329.53060 · doi:10.1016/j.na.2015.08.011
[45] Sturm, K.-T., On the geometry of metric measure spaces. II, Acta Math, 196, 1, 133-177 (2006) · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[46] Sturm, K.-T., On the geometry of metric measure spaces, Acta Math, 196, 1, 65-131 (2006) · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[47] Gigli, N., Tamanini, L. (2019). Benamou-Brenier and duality formulas for the entropic cost on \(####\) spaces. Probability Theory and Related Fields. 1-34. · Zbl 1432.49063
[48] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Invent. Math, 195, 2, 289-391 (2014) · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1
[49] Grigor’yan, A., Heat Kernel and Analysis on Manifolds, Volume 47 (2009), Rhode Island, PR: American Mathematical Soc · Zbl 1206.58008
[50] Ghosal, P., Nutz, M., Bernton, E. (2021). Entropic optimal transport: geometry and large deviations. Preprint, arXiv:2102.04397. · Zbl 1503.49036
[51] Barthe, F.; Kolesnikov, A. V., Mass transport and variants of the logarithmic Sobolev inequality, J. Geom. Anal, 18, 4, 921-979 (2008) · Zbl 1170.46031 · doi:10.1007/s12220-008-9039-6
[52] Robert, E.; Greene, S.; Gallot, d.; Lafontaine, j., riemannian geometry, Bull. Amer. Math. Soc, 21, 1, 157-163 (1989) · doi:10.1090/S0273-0979-1989-15802-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.