×

Entropic optimal transport: convergence of potentials. (English) Zbl 1504.90095

Summary: We study the potential functions that determine the optimal density for \(\varepsilon \)-entropically regularized optimal transport, the so-called Schrödinger potentials, and their convergence to the counterparts in classical optimal transport, the Kantorovich potentials. In the limit \(\varepsilon \rightarrow 0\) of vanishing regularization, strong compactness holds in \(L^1\) and cluster points are Kantorovich potentials. In particular, the Schrödinger potentials converge in \(L^1\) to the Kantorovich potentials as soon as the latter are unique. These results are proved for all continuous, integrable cost functions on Polish spaces. In the language of Schrödinger bridges, the limit corresponds to the small-noise regime.

MSC:

90C25 Convex programming
49N05 Linear optimal control problems
90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)

References:

[1] Agueh, M.; Carlier, G., Barycenters in the Wasserstein space, SIAM J. Math. Anal., 43, 2, 904-924 (2011) · Zbl 1223.49045 · doi:10.1137/100805741
[2] Berman, RJ, The Sinkhorn algorithm, parabolic optimal transport and geometric Monge-Ampère equations, Numer. Math., 145, 4, 771-836 (2020) · Zbl 1453.35084 · doi:10.1007/s00211-020-01127-x
[3] Bernton, E., Ghosal, P., Nutz, M.: Entropic optimal transport: geometry and large deviations. Preprint arXiv:2102.04397v1 (2021)
[4] Beurling, A., An automorphism of product measures, Ann. Math., 2, 72, 189-200 (1960) · Zbl 0091.13001 · doi:10.2307/1970151
[5] Borwein, JM; Lewis, AS, Decomposition of multivariate functions, Canad. J. Math., 44, 3, 463-482 (1992) · Zbl 0789.54012 · doi:10.4153/CJM-1992-030-9
[6] Borwein, JM; Lewis, AS; Nussbaum, RD, Entropy minimization, \(DAD\) problems, and doubly stochastic kernels, J. Funct. Anal., 123, 2, 264-307 (1994) · Zbl 0815.15021 · doi:10.1006/jfan.1994.1089
[7] Carlier, G.: On the linear convergence of the multi-marginal Sinkhorn algorithm. Preprint hal-03176512 (2021)
[8] Carlier, G.; Duval, V.; Peyré, G.; Schmitzer, B., Convergence of entropic schemes for optimal transport and gradient flows, SIAM J. Math. Anal., 49, 2, 1385-1418 (2017) · Zbl 1365.90197 · doi:10.1137/15M1050264
[9] Cominetti, R.; San Martín, J., Asymptotic analysis of the exponential penalty trajectory in linear programming, Math. Program., 67, 2, 169-187 (1994) · Zbl 0833.90081 · doi:10.1007/BF01582220
[10] Conforti, G.; Tamanini, L., A formula for the time derivative of the entropic cost and applications, J. Funct. Anal., 280, 11, 108964 (2021) · Zbl 1462.35476 · doi:10.1016/j.jfa.2021.108964
[11] Csiszár, I., \(I\)-divergence geometry of probability distributions and minimization problems, Ann. Probab., 3, 146-158 (1975) · Zbl 0318.60013 · doi:10.1214/aop/1176996454
[12] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Borges, O., Button, L., Welling, M., Ghahramani, Z., Weinberger, U.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 2292-2300 (2013)
[13] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Volume 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010). Corrected reprint of the second (1998) edition · Zbl 1177.60035
[14] Di Marino, S.; Gerolin, A., An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm, J. Sci. Comput., 85, 2, 27, 28 (2020) · Zbl 1478.49043 · doi:10.1007/s10915-020-01325-7
[15] Föllmer, H.; Bold, A.; Eckmann, B., Random fields and diffusion processes, École d’Été de Probabilités de Saint-Flour XV-XVII, 1985-87, 101-203 (1988), Berlin: Springer, Berlin · Zbl 0661.60063 · doi:10.1007/BFb0086180
[16] Föllmer, H.; Gantert, N., Entropy minimization and Schrödinger processes in infinite dimensions, Ann. Probab., 25, 2, 901-926 (1997) · Zbl 0876.60063 · doi:10.1214/aop/1024404423
[17] Gigli, N.; Tamanini, L., Second order differentiation formula on \({\rm RCD}^*(K, N)\) spaces, J. Eur. Math. Soc. (JEMS), 23, 5, 1727-1795 (2021) · Zbl 1478.53079 · doi:10.4171/JEMS/1042
[18] Léonard, C., From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal., 262, 4, 1879-1920 (2012) · Zbl 1236.49088 · doi:10.1016/j.jfa.2011.11.026
[19] Léonard, C., A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst., 34, 4, 1533-1574 (2014) · Zbl 1277.49052 · doi:10.3934/dcds.2014.34.1533
[20] Mena, G., Niles-Weed, J.: Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem. In: Wallach, H., Larochelle, H., Beygelzimmer, A., d’Aldie’-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 4541-4551 (2019)
[21] Nutz. M.: Introduction to Entropic Optimal Transport. Lecture Notes. Columbia University (2021). https://www.math.columbia.edu/ mnutz/docs/EOT_lecture_notes.pdf
[22] Pal, S.: On the difference between entropic cost and the optimal transport cost. Preprint arXiv:1905.12206v1 (2019)
[23] Pennanen, T.; Perkkiö, A-P, Convex duality in nonlinear optimal transport, J. Funct. Anal., 277, 4, 1029-1060 (2019) · Zbl 1423.46104 · doi:10.1016/j.jfa.2019.04.010
[24] Peyré, G.; Cuturi, M., Computational optimal transport: with applications to data science, Found. Trends Mach. Learn., 11, 5-6, 355-607 (2019) · Zbl 1475.68011 · doi:10.1561/2200000073
[25] Rüschendorf, L.; Thomsen, W., Note on the Schrödinger equation and \(I\)-projections, Stat. Probab. Lett., 17, 5, 369-375 (1993) · Zbl 0780.60036 · doi:10.1016/0167-7152(93)90257-J
[26] Rüschendorf, L.; Thomsen, W., Closedness of sum spaces and the generalized Schrödinger problem, Teor. Veroyatnost. i Primenen., 42, 3, 576-590 (1997) · Zbl 0915.60007 · doi:10.4213/tvp1955
[27] Villani, C., Optimal Transport, Old and New, Volume 338 of Grundlehren der Mathematischen Wissenschaften (2009), Berlin: Springer, Berlin · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.