×

Equivalent semigroup properties for the curvature-dimension condition. (English) Zbl 1230.60083

Author’s abstract: “Some equivalent gradient and Harnack inequalities of a diffusion semigroup are presented for the curvature-dimension condition of the associated generator. As applications, the first eigenvalue, the log-Harnack inequality, heat kernel estimates and the HWI inequality are derived by using the curvature-dimension condition. The transportation inequality for diffusion semigroups is also investigated.”

MSC:

60J60 Diffusion processes

References:

[1] Arnaudon, M.; Thalmaier, A.; Wang, F.-Y., Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below, Bull. Sci. Math., 130, 223-233 (2006) · Zbl 1089.58024
[2] Bakry, D., On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, (New Trends in Stochastic Analysis (1997), World Scientific), 43-75
[3] Bakry, D.; Emery, M., Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris. Sér. I Math., 299, 775-778 (1984) · Zbl 0563.60068
[4] Bakry, D.; Qian, Z., Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Mat. Iberoamericana, 15, 143-179 (1999) · Zbl 0924.58096
[5] Bakry, D.; Qian, Z., Some new results on eigenvectors via dimension, diameter and Ricci curvature, Adv. Math., 155, 98-153 (2000) · Zbl 0980.58020
[6] Bobkov, S. G.; Gentil, I.; Ledoux, M., Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl., 80, 669-696 (2001) · Zbl 1038.35020
[7] Chen, M.-F.; Wang, F.-Y., Application of coupling method to the first eigenvalue on manifold, Sci. China Ser. A, 40, 384-394 (1997) · Zbl 0895.58056
[8] Cranston, M., Gradient estimates on manifolds using coupling, J. Funct. Anal., 99, 110-124 (1991) · Zbl 0770.58038
[9] Kendall, W. S., Nonnegative Ricci curvature and the Brownian coupling property, Stochastics, 19, 111-129 (1986) · Zbl 0584.58045
[10] Ledoux, M., The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse, 9, 305-366 (2000) · Zbl 0980.60097
[11] Li, P.; Yau, S.-T., On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 153-201 (1986) · Zbl 0611.58045
[12] Lichnerowicz, A., Géométrie des Groupes des Transformations (1958), Dunod: Dunod Paris · Zbl 0096.16001
[13] Otto, F.; Villani, C., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173, 361-400 (2000) · Zbl 0985.58019
[14] von Renesse, M.-K.; Sturm, K.-T., Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58, 923-940 (2005) · Zbl 1078.53028
[15] Saloff-Coste, L., Convergence to equilibrium and elliptic operator, Potential Anal., 8, 137-142 (1998) · Zbl 0930.58012
[16] Sturm, K.-T., Heat kernel bounds on manifolds, Math. Ann., 292, 149-162 (1992) · Zbl 0747.58048
[17] Wang, F.-Y., Equivalence of dimension-free Harnack inequality and curvature condition, Integral Equations Operator Theory, 48, 547-552 (2004) · Zbl 1074.47020
[18] Wang, F.-Y., Functional Inequalities, Markov Semigroups and Spectral Theory (2005), Science Press: Science Press Beijing
[19] Wang, F.-Y., Generalized transportation-cost inequalities and applications, Potential Anal., 28, 321-334 (2008) · Zbl 1142.60052
[20] Wang, F.-Y., Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl., 94, 304-321 (2010) · Zbl 1207.58028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.