×

Lusztig’s \(t\)-analogue of weight multiplicity via crystals. (English) Zbl 1523.17019

Greenstein, Jacob (ed.) et al., Interactions of quantum affine algebras with cluster algebras, current algebras and categorification. In honor of Vyjayanthi Chari on the occasion of her 60th birthday. Based on the summer school and the conference, Washington, DC, USA, June 2018. Cham: Birkhäuser. Prog. Math. 337, 323-357 (2021).
Summary: We give a purely combinatorial proof of the positivity of the stabilized forms of the generalized exponents associated with each classical root system. In finite type \(A_{n -1}\), we rederive the description of the generalized exponents in terms of crystal graphs without using the combinatorics of semistandard tableaux or the charge statistic. In finite type \(C_n\), we obtain a combinatorial description of the generalized exponents based on the so-called distinguished vertices in crystals of type \(A_{2n -1}\), which we also connect to symplectic King tableaux. This gives a combinatorial proof of the positivity of Lusztig \(t\)-analogues associated with zero weight spaces in the irreducible representations of symplectic Lie algebras. We then present three applications of our combinatorial formula. Our methods are expected to extend to the orthogonal types.
By a result of Lascoux, the type \(A\) Kostka-Foulkes polynomials also expand positively in terms of the so-called atomic polynomials. We define, in arbitrary type, a combinatorial version of the atomic decomposition, based on the connected components of a modified crystal graph. We prove this property in type \(A\), as well as in types \(B\), \(C\), and \(D\) in a stable range for \(t = 1\). We also discuss other cases, applications, and a geometric interpretation. Finally, in classical types, we state the atomic decomposition for stable 1-dimensional sums or, equivalently, for the stable Lusztig \(t\)-analogues.
For the entire collection see [Zbl 1481.17001].

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
05E10 Combinatorial aspects of representation theory

Software:

Sage-Combinat
Full Text: DOI

References:

[1] Braden, T.; MacPherson, R., From moment graphs to intersection cohomology, Math. Ann., 321, 533-551 (2001) · Zbl 1077.14522 · doi:10.1007/s002080100232
[2] Brylawski, T., The lattice of integer partitions, Discrete Math., 6, 201-219 (1973) · Zbl 0283.06003 · doi:10.1016/0012-365X(73)90094-0
[3] M. Dolega, T. Gerber, and J. Torres. A positive combinatorial formula for symplectic Kostka-Foulkes polynomials I: Rows, 2019, J. Algebra 560:1253-1296, 2020. arXiv:1911.06732. · Zbl 1452.05188
[4] V. Ginzburg. Perverse sheaves on a Loop group and Langlands’ duality. arXiv:math.alg-geom/9511007, 1995.
[5] Hesselink, W-H, Characters of the nullcone, Math. Ann., 252, 179-182 (1980) · Zbl 0447.17006 · doi:10.1007/BF01420081
[6] Ion, B., Generalized exponents of small representations I, Represent. Theory, 13, 401-426 (2009) · Zbl 1250.17012 · doi:10.1090/S1088-4165-09-00359-8
[7] Ion, B., Generalized exponents of small representations II, Represent. Theory, 15, 433-493 (2011) · Zbl 1250.17013 · doi:10.1090/S1088-4165-2011-00372-1
[8] I.-S. Jang and J.-H. Kwon. Flagged Littlewood-Richardson tableaux and branching rule for classical groups, 2019, J. Combin. Theory Ser. A 181:105419, 51, 2021. arXiv:1908.11041. · Zbl 1461.05238
[9] Kac, V. G., Infinite Dimensional Lie Algebras 3rd ed (1990), Cambridge, UK: Cambridge Univ. Press, Cambridge, UK · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[10] Kashiwara, M., Crystal bases of modified quantized enveloping algebra, Duke Math. J., 73, 383-413 (1994) · Zbl 0794.17009 · doi:10.1215/S0012-7094-94-07317-1
[11] Kato, S., Spherical functions and a q-analogue of Kostant’s weight multiplicity formula, Invent. Math., 66, 461-468 (1982) · Zbl 0498.17005 · doi:10.1007/BF01389223
[12] King, R. C., Weight multiplicities for the classical groups, Lectures Notes in Phys., 50, 490-499 (1976) · Zbl 0369.22018 · doi:10.1007/3-540-07789-8_51
[13] Kostant, B., Lie groups representations on polynomial rings, Amer. J. Math., 85, 327-404 (1963) · Zbl 0124.26802 · doi:10.2307/2373130
[14] Kwon, J-H, Combinatorial extension of stable branching rules for classical groups, Trans. Amer. Math. Soc., 370, 6125-6152 (2018) · Zbl 1430.17047 · doi:10.1090/tran/7104
[15] J.-H. Kwon. Lusztig data of Kashiwara-Nakashima tableaux in types B and C. J. Algebra 503:222-264, 2018. · Zbl 1426.17009
[16] A. Lascoux and M-P. Schützenberger. Sur une conjecture de H. O. Foulkes. C. R. Acad. Sci. Paris 288:95-98, 1979. · Zbl 0398.20052
[17] Lascoux, A.; Leclerc, B.; Thibon, J-Y, Crystal graphs and q-analogue of weight multiplicities for the root system A_n, Lett. Math. Phys., 35, 359-374 (1995) · Zbl 0854.17014 · doi:10.1007/BF00750843
[18] A. Lascoux. Cyclic permutations on words, tableaux and harmonic polynomials. In Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pages 323-347. Manoj Prakashan, Madras, 1991. · Zbl 0823.20012
[19] A. Lascoux. Polynomials, 2013, available at http://phalanstere.u-perm.fr/ al/ARTICLES/ CoursYGKM.pdf.
[20] Lecouvey, C.; Lenart, C., Combinatorics of generalized exponents, Int. Math. Res. Not., 16, 4942-4992 (2020) · Zbl 1458.05260 · doi:10.1093/imrn/rny157
[21] C. Lecouvey and C. Lenart. Atomic decomposition of characters and crystals, Adv. Math., 376:107453, 51, 2021. · Zbl 1459.05343
[22] Lecouvey, C., Kostka-Foulkes polynomials, cyclage graphs and charge statistic for the root system C_n, J. Algebraic Combin., 21, 203-240 (2005) · Zbl 1064.05148 · doi:10.1007/s10801-005-6909-x
[23] Lecouvey, C., Combinatorics of crystal graphs and Kostka-Foulkes polynomials for the root systems B_n, C_n, and D_n, European J. Combin., 27, 526-557 (2006) · Zbl 1107.05096 · doi:10.1016/j.ejc.2005.01.006
[24] Lecouvey, C.; Okado, M.; Shimozono, M., One-dimensional sums and parabolic Lusztig q-analogues, Math. Z., 271, 819-865 (2012) · Zbl 1251.17009 · doi:10.1007/s00209-011-0892-9
[25] D.-E. Littlewood. The theory of group characters and matrix representations of groups. Oxford University Press, second edition, 1958.
[26] G. Lusztig. Singularities, character formulas, and a q-analog of weight multiplicities. Analyse et topologie sur les espaces singuliers (II-III), Astérisque 101-102:208-227, 1983. · Zbl 0561.22013
[27] Mirković, I.; Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), 166, 95-143 (2007) · Zbl 1138.22013 · doi:10.4007/annals.2007.166.95
[28] The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008. http://combinat.sagemath.org.
[29] Sheats, J., A symplectic jeu de taquin bijection between the tableaux of King and De Concini, Trans. Amer. Math., 351, 3569-3607 (1999) · Zbl 0940.05069 · doi:10.1090/S0002-9947-99-02166-2
[30] Shimozono, M., Multi-atoms and monotonicity of generalized Kostka polynomials, European J. Combin., 22, 395-414 (2001) · Zbl 0979.05108 · doi:10.1006/eujc.2000.0465
[31] M. Shimozono. Crystal for dummies. Available at https://aimath.org/WWN/ kostka/crysdumb.pdf.
[32] Stembridge, J., The partial order of dominant weights, Adv. Math., 136, 340-364 (1998) · Zbl 0916.06001 · doi:10.1006/aima.1998.1736
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.