Skip to main content
Log in

Affine crystals, one-dimensional sums and parabolic Lusztig q-analogues

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This paper is concerned with one-dimensional sums in classical affine types. We prove a conjecture of Shimozono and Zabrocki (J Algebra 299:33–61, 2006) by showing they all decompose in terms of one-dimensional sums related to affine type A provided the rank of the root system considered is sufficiently large. As a consequence, any one- dimensional sum associated to a classical affine root system with sufficiently large rank can be regarded as a parabolic Lusztig q-analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasaka T., Kashiwara M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 33, 839–867 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broer, A.: Normality of some nilpotent varieties and cohomology of lines bundles on the cotangent bundles of the flag variety. In: Brylinski, J.L., Guillemin, V., Kac, V. (eds.) Lie Theory and Geometry in Honor of Bertrand Kostant. Progess in Mathematics, vol. 123, pp. 1–18 (1994)

  3. Fourier G., Okado M., Schilling A.: Kirillov-Reshetikhin crystals for nonexceptional types. Adv. Math. 222, 1080–1116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fourier G., Okado M., Schilling A.: Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types. Contemp. Math. 506, 127–143 (2010)

    Article  MathSciNet  Google Scholar 

  5. Fourier G., Schilling A., Shimozono M.: Demazure structure inside Kirillov-Reshetikhin crystals. J. Algebra 309, 386–404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fulton, W.: Young Tableaux. With applications to representation theory and geometry. In: London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

  7. Goodman R., Wallach N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Hague C.: Cohomology of flag varieties and the Brylinski-Kostant filtration. J. Algebra 321, 3790–3815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae, Math. Phys. Odyssey 2001. In: Prog. Math. Phys. vol. 23, pp. 205–272. Birkhäuser, Boston (2002)

  10. Howe R., Tan E.-C., Willenbring J.-F.: Stable branching rules for classical symmetric pairs. Trans. Am. Math. Soc. 357, 1601–1626 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kac V.: Infinite dimensional Lie algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  12. King R.C.: Modification rules and products of irreducible representations for the unitary, orthogonal and symplectic groups. J. Math. Phys. 12, 1588–1598 (1971)

    Article  MATH  Google Scholar 

  13. Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A.: Affine crystals and vertex models. Int. J. Mod. Phys. A 7(suppl 1A), 449–484 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68, 499–607 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kashiwara M., Nakashima T.: Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra 165(2), 295–345 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirillov A.N., Shimozono M.: A generalization of the Kostka-Foulkes polynomials. J. Algebraic Combin. 15, 27–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koike K., Terada I.: Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank. Adv. Math. 79, 104–135 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lecouvey C.: Quantization of branching coefficients for classical Lie groups. J. Algebra 308, 383–413 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lecouvey C.: Schensted-type correspondences and plactic monoids for types B n and D n . J. Algebraic Combin. 18, 99–133 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lecouvey C., Shimozono M.: Lusztig’s q-analogue of weight multiplicity and one-dimensional sums for affine root systems. Adv. Math. 208, 438–466 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Littlewood D.-E.: The Theory of Group Characters and Matrix Representations of Groups, 2nd edn. Oxford University Press, Oxford (1958)

    Google Scholar 

  22. Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd edn. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York (1995)

  23. Naito S., Sagaki D.: Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras. Commun. Math. Phys. 263(3), 749–787 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakayashiki A., Yamada Y.: Kostka-Foulkes polynomials and energy function in sovable lattice models. Selecta Math. (N. S.) 3, 547–599 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Okado M., Sakamoto R.: Combinatorial R-matrices for Kirillov-Reshetikhin crystals of type \({D_{n}^{(1)},B_{n}^{(1)},A_{2n-1}^{(2)}}\) . Int. Math. Res. Not. 2010, 559–593 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Okado M., Schilling A.: Existence of Kirillov-Reshetikhin crystals for nonexceptional types. Represent. Theory 12, 186–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Okado M., Schilling A., Shimozono M.: Virtual crystals and fermionic formulas of type \({D^{(2)}_{n+1}, A^{(2)}_{2n}}\) , and \({C^{(1)}_n}\) . Represent. Theory 7, 101–163 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schilling A.: Combinatorial structure of Kirillov-Reshetikhin crystals of type \({D_{n}^{(1)}, B_{n}^{(1)}, A_{2n-1}^{(2)}}\) . J. Algebra 319, 2938–2962 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shimozono M.: Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties. J. Algebraic Combin. 15(2), 151–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shimozono, M.: On the X = K conjecture. arXiv:math.CO/0501353

  31. Schilling A., Warnaar S.: Inhomogeneous lattice paths, generalized Kostka polynomials and A n-1 supernomials. Commun. Math. Phys. 202(2), 359–401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shimozono M., Zabrocki M.: Deformed universal characters for classical and affine algebras. J. Algebra 299, 33–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Lecouvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecouvey, C., Okado, M. & Shimozono, M. Affine crystals, one-dimensional sums and parabolic Lusztig q-analogues. Math. Z. 271, 819–865 (2012). https://doi.org/10.1007/s00209-011-0892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0892-9

Keywords

Navigation