×

Combinatorial extension of stable branching rules for classical groups. (English) Zbl 1430.17047

Summary: We give new combinatorial formulas for decomposition of the tensor product of integrable highest weight modules over the classical Lie algebras of types \(B\), \(C\), \(D\), and the branching decomposition of an integrable highest weight module with respect to a maximal Levi subalgebra of type \( A\). This formula is based on a combinatorial model of classical crystals called spinor model. We show that our formulas extend in a bijective way various stable branching rules for classical groups to arbitrary highest weights, including the Littlewood restriction rules.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
05E10 Combinatorial aspects of representation theory
20G05 Representation theory for linear algebraic groups
22E46 Semisimple Lie groups and their representations

References:

[1] Berenstein, Arkady; Zelevinsky, Andrei, Tensor product multiplicities and convex polytopes in partition space, J. Geom. Phys., 5, 3, 453-472 (1988) · Zbl 0712.17006 · doi:10.1016/0393-0440(88)90033-2
[2] Berenstein, Arkady; Zelevinsky, Andrei, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143, 1, 77-128 (2001) · Zbl 1061.17006 · doi:10.1007/s002220000102
[3] Cheng, Shun-Jen; Kwon, Jae-Hoon, Howe duality and Kostant homology formula for infinite-dimensional Lie superalgebras, Int. Math. Res. Not. IMRN, Art. ID rnn 085, 52 pp. pp. (2008) · Zbl 1217.17011 · doi:10.1093/imrn/rnn085
[4] Cheng, Shun-Jen; Kwon, Jae-Hoon; Wang, Weiqiang, Kostant homology formulas for oscillator modules of Lie superalgebras, Adv. Math., 224, 4, 1548-1588 (2010) · Zbl 1210.17026 · doi:10.1016/j.aim.2010.01.002
[5] Cheng, Shun-Jen; Lam, Ngau; Wang, Weiqiang, Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Invent. Math., 183, 1, 189-224 (2011) · Zbl 1246.17007 · doi:10.1007/s00222-010-0277-4
[6] Dan-Cohen, Elizabeth; Penkov, Ivan; Serganova, Vera, A Koszul category of representations of finitary Lie algebras, Adv. Math., 289, 250-278 (2016) · Zbl 1395.17045 · doi:10.1016/j.aim.2015.10.023
[7] Enright, Thomas J.; Willenbring, Jeb F., Hilbert series, Howe duality and branching for classical groups, Ann. of Math. (2), 159, 1, 337-375 (2004) · Zbl 1087.22011 · doi:10.4007/annals.2004.159.337
[8] Goodman, Roe; Wallach, Nolan R., Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications 68, xvi+685 pp. (1998), Cambridge University Press, Cambridge · Zbl 0901.22001
[9] Hong, Jin; Kang, Seok-Jin, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics 42, xviii+307 pp. (2002), American Mathematical Society, Providence, RI · Zbl 1134.17007 · doi:10.1090/gsm/042
[10] Hayashi, Takahiro, \(q\)-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys., 127, 1, 129-144 (1990) · Zbl 0701.17008
[11] Howe, Roger, Remarks on classical invariant theory, Trans. Amer. Math. Soc., 313, 2, 539-570 (1989) · Zbl 0674.15021 · doi:10.2307/2001418
[12] Howe, Roger; Tan, Eng-Chye; Willenbring, Jeb F., Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., 357, 4, 1601-1626 (2005) · Zbl 1069.22006 · doi:10.1090/S0002-9947-04-03722-5
[13] Fulton, William, Young tableaux, With applications to representation theory and geometry. London Mathematical Society Student Texts 35, x+260 pp. (1997), Cambridge University Press, Cambridge · Zbl 0878.14034
[14] Jeong, Kyeonghoon, Crystal bases for Kac-Moody superalgebras, J. Algebra, 237, 2, 562-590 (2001) · Zbl 1024.17010 · doi:10.1006/jabr.2000.8590
[15] Kac, Victor, Lie superalgebras, Advances in Math., 26, 1, 8-96 (1977) · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[16] Kac, Victor G., Infinite-dimensional Lie algebras, xxii+400 pp. (1990), Cambridge University Press, Cambridge · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[17] Kamnitzer, Joel, The crystal structure on the set of Mirkovi\'c-Vilonen polytopes, Adv. Math., 215, 1, 66-93 (2007) · Zbl 1134.14028 · doi:10.1016/j.aim.2007.03.012
[18] Kashiwara, Masaki, On crystal bases of the \(Q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 2, 465-516 (1991) · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[19] Kashiwara, Masaki, On crystal bases. Representations of groups, Banff, AB, 1994, CMS Conf. Proc. 16, 155-197 (1995), Amer. Math. Soc., Providence, RI · Zbl 0851.17014
[20] Kashiwara, Masaki; Nakashima, Toshiki, Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras, J. Algebra, 165, 2, 295-345 (1994) · Zbl 0808.17005 · doi:10.1006/jabr.1994.1114
[21] King, Ronald, Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups, J. Mathematical Phys., 12, 1588-1598 (1971) · Zbl 0239.20061 · doi:10.1063/1.1665778
[22] Koike, Kazuhiko, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math., 74, 1, 57-86 (1989) · Zbl 0681.20030 · doi:10.1016/0001-8708(89)90004-2
[23] Koike, Kazuhiko; Terada, Itaru, Young-diagrammatic methods for the representation theory of the classical groups of type \(B_n,\;C_n,\;D_n\), J. Algebra, 107, 2, 466-511 (1987) · Zbl 0622.20033 · doi:10.1016/0021-8693(87)90099-8
[24] Koike, Kazuhiko; Terada, Itaru, Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math., 79, 1, 104-135 (1990) · Zbl 0698.22013 · doi:10.1016/0001-8708(90)90059-V
[25] Kwon, Jae-Hoon, Littlewood identity and crystal bases, Adv. Math., 230, 2, 699-745 (2012) · Zbl 1282.17008 · doi:10.1016/j.aim.2012.02.010
[26] Kwon, Jae-Hoon, Super duality and crystal bases for quantum ortho-symplectic superalgebras, Int. Math. Res. Not. IMRN, 23, 12620-12677 (2015) · Zbl 1356.17014 · doi:10.1093/imrn/rnv076
[27] Kwon, Jae-Hoon, Super duality and crystal bases for quantum ortho-symplectic superalgebras II, J. Algebraic Combin., 43, 3, 553-588 (2016) · Zbl 1395.17028 · doi:10.1007/s10801-015-0646-6
[28] Lecouvey, C\'edric, Quantization of branching coefficients for classical Lie groups, J. Algebra, 308, 1, 383-413 (2007) · Zbl 1117.22004 · doi:10.1016/j.jalgebra.2006.08.028
[29] Lecouvey, C\'edric, Crystal bases and combinatorics of infinite rank quantum groups, Trans. Amer. Math. Soc., 361, 1, 297-329 (2009) · Zbl 1190.17008 · doi:10.1090/S0002-9947-08-04480-2
[30] Lecouvey, C\'edric; Okado, Masato; Shimozono, Mark, Affine crystals, one-dimensional sums and parabolic Lusztig \(q\)-analogues, Math. Z., 271, 3-4, 819-865 (2012) · Zbl 1251.17009 · doi:10.1007/s00209-011-0892-9
[31] Littelmann, Peter, Paths and root operators in representation theory, Ann. of Math. (2), 142, 3, 499-525 (1995) · Zbl 0858.17023 · doi:10.2307/2118553
[32] Littlewood, Dudley E., On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London. Ser. A., 239, 387-417 (1944) · Zbl 0060.04403 · doi:10.1098/rsta.1944.0003
[33] Lw-2 Dudley E. Littlewood, Theory of Group Characters, Clarendon Press, Oxford, 1945.
[34] Macdonald, Ian G., Symmetric functions and Hall polynomials, with contributions by A. Zelevinsky, Oxford Mathematical Monographs, x+475 pp. (1995), The Clarendon Press, Oxford University Press, New York · Zbl 0824.05059
[35] Nakashima, Toshiki, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras, Comm. Math. Phys., 154, 2, 215-243 (1993) · Zbl 0795.17016
[36] Newell, Martin J., Modification rules for the orthogonal and symplectic groups, Proc. Roy. Irish Acad. Sect. A., 54, 153-163 (1951) · Zbl 0044.25802
[37] Penkov, Ivan; Styrkas, Konstantin, Tensor representations of classical locally finite Lie algebras. Developments and trends in infinite-dimensional Lie theory, Progr. Math. 288, 127-150 (2011), Birkh\"auser Boston, Inc., Boston, MA · Zbl 1261.17021 · doi:10.1007/978-0-8176-4741-4\_4
[38] Sam, Steven V.; Snowden, Andrew, Stability patterns in representation theory, Forum Math. Sigma, 3, e11, 108 pp. (2015) · Zbl 1319.05146 · doi:10.1017/fms.2015.10
[39] Sundaram, Sheila, Tableaux in the representation theory of the classical Lie groups. Invariant theory and tableaux, Minneapolis, MN, 1988, IMA Vol. Math. Appl. 19, 191-225 (1990), Springer, New York · Zbl 0707.22004
[40] Wang, Weiqiang, Duality in infinite-dimensional Fock representations, Commun. Contemp. Math., 1, 2, 155-199 (1999) · Zbl 0951.17011 · doi:10.1142/S0219199799000080
[41] Wenzl, Hans, Quotients of representation rings, Represent. Theory, 15, 385-406 (2011) · Zbl 1246.22016 · doi:10.1090/S1088-4165-2011-00401-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.