×

Holographic coarse-graining: correlators from the entanglement wedge and other reduced geometries. (English) Zbl 1522.83293

Summary: There is some tension between two well-known ideas in holography. On the one hand, subregion duality asserts that the reduced density matrix associated with a limited region of the boundary theory is dual to a correspondingly limited region in the bulk, known as the entanglement wedge. On the other hand, correlators that in the boundary theory can be computed solely with that density matrix are calculated in the bulk via the GKPW or BDHM prescriptions, which require input from beyond the entanglement wedge. We show that this tension is resolved by recognizing that the reduced state is only fully identified when the entanglement wedge is supplemented with a specific infrared boundary action, associated with an end-of-the-world brane. This action is obtained by coarse-graining through a variant of Wilsonian integration, a procedure that we call holographic rememorization, which can also be applied to define other reduced density or transition matrices, as well as more general reduced partition functions. We find an interesting connection with AdS/BCFT, and, in this context, we are led to a simple example of an equivalence between an ensemble of theories and a single theory, as discussed in recent studies of the black hole information problem.

MSC:

83E05 Geometrodynamics and the holographic principle
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C45 Quantization of the gravitational field
83C57 Black holes
83E30 String and superstring theories in gravitational theory

References:

[1] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[2] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[4] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021 (2003) · doi:10.1088/1126-6708/2003/04/021
[5] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. · Zbl 1359.81171
[6] M. Van Raamsdonk, A patchwork description of dual spacetimes in AdS/CFT, Class. Quant. Grav.28 (2011) 065002 [INSPIRE]. · Zbl 1211.83017
[7] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
[8] B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
[9] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781 (2013) · Zbl 1338.83057 · doi:10.1002/prop.201300020
[10] E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys.90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].
[11] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[12] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[13] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090 (2013) · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[14] Dong, X.; Lewkowycz, A.; Rangamani, M., Deriving covariant holographic entanglement, JHEP, 11, 028 (2016) · Zbl 1390.83103 · doi:10.1007/JHEP11(2016)028
[15] Barrella, T.; Dong, X.; Hartnoll, SA; Martin, VL, Holographic entanglement beyond classical gravity, JHEP, 09, 109 (2013) · Zbl 1342.83260
[16] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, JHEP, 11, 074 (2013) · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[17] Engelhardt, N.; Wall, AC, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP, 01, 073 (2015) · doi:10.1007/JHEP01(2015)073
[18] Dong, X., Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP, 01, 044 (2014) · Zbl 1333.83156 · doi:10.1007/JHEP01(2014)044
[19] Camps, J., Generalized entropy and higher derivative Gravity, JHEP, 03, 070 (2014) · Zbl 1333.83136 · doi:10.1007/JHEP03(2014)070
[20] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE]. · Zbl 1248.83029
[21] A.C. Wall, Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE]. · Zbl 1304.81139
[22] Headrick, M.; Hubeny, VE; Lawrence, A.; Rangamani, M., Causality & holographic entanglement entropy, JHEP, 12, 162 (2014) · doi:10.1007/JHEP12(2014)162
[23] I. Bena, On the construction of local fields in the bulk of AdS_5and other spaces, Phys. Rev. D62 (2000) 066007 [hep-th/9905186] [INSPIRE].
[24] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A boundary view of horizons and locality, Phys. Rev. D73 (2006) 086003 [hep-th/0506118] [INSPIRE]. · Zbl 1165.81352
[25] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D74 (2006) 066009 [hep-th/0606141] [INSPIRE]. · Zbl 1165.81352
[26] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A holographic description of the black hole interior, Phys. Rev. D75 (2007) 106001 [Erratum ibid.75 (2007) 129902] [hep-th/0612053] [INSPIRE]. · Zbl 1165.81352
[27] Heemskerk, I.; Marolf, D.; Polchinski, J.; Sully, J., Bulk and Transhorizon Measurements in AdS/CFT, JHEP, 10, 165 (2012) · doi:10.1007/JHEP10(2012)165
[28] R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].
[29] Papadodimas, K.; Raju, S., An Infalling Observer in AdS/CFT, JHEP, 10, 212 (2013) · doi:10.1007/JHEP10(2013)212
[30] K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
[31] K. Papadodimas and S. Raju, Black Hole Interior in the Holographic Correspondence and the Information Paradox, Phys. Rev. Lett.112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].
[32] K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].
[33] Morrison, IA, Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, JHEP, 05, 053 (2014) · doi:10.1007/JHEP05(2014)053
[34] Jafferis, DL; Lewkowycz, A.; Maldacena, J.; Suh, SJ, Relative entropy equals bulk relative entropy, JHEP, 06, 004 (2016) · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[35] X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
[36] Faulkner, T.; Lewkowycz, A., Bulk locality from modular flow, JHEP, 07, 151 (2017) · Zbl 1380.81313 · doi:10.1007/JHEP07(2017)151
[37] J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys. Rev. X9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].
[38] Kim, J-W, Explicit reconstruction of the entanglement wedge, JHEP, 01, 131 (2017) · Zbl 1373.81332 · doi:10.1007/JHEP01(2017)131
[39] A. Almheiri, T. Anous and A. Lewkowycz, Inside out: meet the operators inside the horizon. On bulk reconstruction behind causal horizons, JHEP01 (2018) 028 [arXiv:1707.06622] [INSPIRE]. · Zbl 1384.81089
[40] Chen, C-F; Penington, G.; Salton, G., Entanglement Wedge Reconstruction using the Petz Map, JHEP, 01, 168 (2020) · Zbl 1434.81011 · doi:10.1007/JHEP01(2020)168
[41] Almheiri, A.; Dong, X.; Harlow, D., Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP, 04, 163 (2015) · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[42] Harlow, D., The Ryu-Takayanagi Formula from Quantum Error Correction, Commun. Math. Phys., 354, 865 (2017) · Zbl 1377.81040 · doi:10.1007/s00220-017-2904-z
[43] Akers, C.; Akers, C.; Penington, G., Quantum minimal surfaces from quantum error correction, SciPost Phys., 12, 157 (2022) · doi:10.21468/SciPostPhys.12.5.157
[44] D. Harlow, TASI Lectures on the Emergence of Bulk Physics in AdS/CFT, PoSTASI2017 (2018) 002 [arXiv:1802.01040] [INSPIRE].
[45] T. De Jonckheere, Modave lectures on bulk reconstruction in AdS/CFT, PoSModave2017 (2018) 005 [arXiv:1711.07787] [INSPIRE].
[46] Kajuri, N., Lectures on Bulk Reconstruction, SciPost Phys. Lect. Notes, 22, 1 (2021)
[47] B. Chen, B. Czech and Z.-z. Wang, Quantum information in holographic duality, Rept. Prog. Phys.85 (2022) 046001 [arXiv:2108.09188] [INSPIRE].
[48] Kibe, T.; Mandayam, P.; Mukhopadhyay, A., Holographic spacetime, black holes and quantum error correcting codes: a review, Eur. Phys. J. C, 82, 463 (2022) · doi:10.1140/epjc/s10052-022-10382-1
[49] C. Akers, J. Koeller, S. Leichenauer and A. Levine, Geometric Constraints from Subregion Duality Beyond the Classical Regime, arXiv:1610.08968 [INSPIRE].
[50] Cáceres, E.; Misobuchi, AS; Pedraza, JF, Constraining higher order gravities with subregion duality, JHEP, 11, 175 (2019) · Zbl 1442.83023 · doi:10.1007/JHEP11(2019)175
[51] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from Conformal Field Theory, JHEP, 10, 079 (2009) · doi:10.1088/1126-6708/2009/10/079
[52] Henningson, M.; Skenderis, K., The Holographic Weyl anomaly, JHEP, 07, 023 (1998) · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[53] Balasubramanian, V.; Kraus, P., A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys., 208, 413 (1999) · Zbl 0946.83013 · doi:10.1007/s002200050764
[54] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D60 (1999) 104001 [hep-th/9903238] [INSPIRE].
[55] de Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595 (2001) · Zbl 0984.83043 · doi:10.1007/s002200100381
[56] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849 (2002) · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[57] Heemskerk, I.; Polchinski, J., Holographic and Wilsonian Renormalization Groups, JHEP, 06, 031 (2011) · Zbl 1298.81181 · doi:10.1007/JHEP06(2011)031
[58] Faulkner, T.; Liu, H.; Rangamani, M., Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, JHEP, 08, 051 (2011) · Zbl 1298.81173
[59] Balasubramanian, V.; Guica, M.; Lawrence, A., Holographic Interpretations of the Renormalization Group, JHEP, 01, 115 (2013) · Zbl 1342.81335 · doi:10.1007/JHEP01(2013)115
[60] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
[61] V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D59 (1999) 104021 [hep-th/9808017] [INSPIRE].
[62] D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
[63] Espíndola, R.; Guijosa, A.; Pedraza, JF, Entanglement Wedge Reconstruction and Entanglement of Purification, Eur. Phys. J. C, 78, 646 (2018) · doi:10.1140/epjc/s10052-018-6140-2
[64] V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].
[65] Terhal, BM; Horodecki, M.; Leung, DW; DiVincenzo, DP, The entanglement of purification, J. Math. Phys., 43, 4286 (2002) · Zbl 1060.81509 · doi:10.1063/1.1498001
[66] Takayanagi, T.; Umemoto, K., Entanglement of purification through holographic duality, Nature Phys., 14, 573 (2018) · doi:10.1038/s41567-018-0075-2
[67] Nguyen, P.; Devakul, T.; Halbasch, MG; Zaletel, MP; Swingle, B., Entanglement of purification: from spin chains to holography, JHEP, 01, 098 (2018) · Zbl 1384.81117 · doi:10.1007/JHEP01(2018)098
[68] N. Bao, A. Chatwin-Davies, B.E. Niehoff and M. Usatyuk, Bulk Reconstruction Beyond the Entanglement Wedge, Phys. Rev. D101 (2020) 066011 [arXiv:1911.00519] [INSPIRE].
[69] N. Bao, C. Cao, S. Fischetti and C. Keeler, Towards Bulk Metric Reconstruction from Extremal Area Variations, Class. Quant. Grav.36 (2019) 185002 [arXiv:1904.04834] [INSPIRE]. · Zbl 1478.83231
[70] N. Bao, C. Cao, S. Fischetti, J. Pollack and Y. Zhong, More of the Bulk from Extremal Area Variations, Class. Quant. Grav.38 (2021) 047001 [arXiv:2009.07850] [INSPIRE]. · Zbl 1480.83116
[71] Rey, S-J; Yee, J-T, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C, 22, 379 (2001) · Zbl 1072.81555 · doi:10.1007/s100520100799
[72] Maldacena, JM, Wilson loops in large N field theories, Phys. Rev. Lett., 80, 4859 (1998) · Zbl 0947.81128 · doi:10.1103/PhysRevLett.80.4859
[73] N. Engelhardt and A.C. Wall, Decoding the Apparent Horizon: Coarse-Grained Holographic Entropy, Phys. Rev. Lett.121 (2018) 211301 [arXiv:1706.02038] [INSPIRE].
[74] Engelhardt, N.; Wall, AC, Coarse Graining Holographic Black Holes, JHEP, 05, 160 (2019) · Zbl 1416.83049 · doi:10.1007/JHEP05(2019)160
[75] N. Engelhardt and S. Fischetti, Losing the IR: a Holographic Framework for Area Theorems, Class. Quant. Grav.36 (2019) 035008 [arXiv:1805.08891] [INSPIRE]. · Zbl 1475.83065
[76] Y. Nomura, P. Rath and N. Salzetta, Pulling the Boundary into the Bulk, Phys. Rev. D98 (2018) 026010 [arXiv:1805.00523] [INSPIRE].
[77] C. Murdia, Y. Nomura and P. Rath, Coarse-Graining Holographic States: A Semiclassical Flow in General Spacetimes, Phys. Rev. D102 (2020) 086001 [arXiv:2008.01755] [INSPIRE].
[78] Czech, B.; De Boer, J.; Ge, D.; Lamprou, L., A modular sewing kit for entanglement wedges, JHEP, 11, 094 (2019) · Zbl 1429.83077 · doi:10.1007/JHEP11(2019)094
[79] B. Chen, B. Czech and Z.-z. Wang, Query complexity and cutoff dependence of the CFT2 ground state, Phys. Rev. D103 (2021) 026015 [arXiv:2004.11377] [INSPIRE].
[80] Karch, A.; Randall, L., Locally localized gravity, JHEP, 05, 008 (2001) · Zbl 1047.81062 · doi:10.1088/1126-6708/2001/05/008
[81] A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett.87 (2001) 061601 [hep-th/0105108] [INSPIRE]. · Zbl 1047.81062
[82] Karch, A.; Randall, L., Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP, 06, 063 (2001) · doi:10.1088/1126-6708/2001/06/063
[83] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett.107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].
[84] Fujita, M.; Takayanagi, T.; Tonni, E., Aspects of AdS/BCFT, JHEP, 11, 043 (2011) · Zbl 1306.81152 · doi:10.1007/JHEP11(2011)043
[85] Nozaki, M.; Takayanagi, T.; Ugajin, T., Central Charges for BCFTs and Holography, JHEP, 06, 066 (2012) · Zbl 1397.81318 · doi:10.1007/JHEP06(2012)066
[86] R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary conformal field theory, Phys. Rev. D96 (2017) 046005 [arXiv:1701.04275] [INSPIRE].
[87] Chu, C-S; Miao, R-X; Guo, W-Z, On New Proposal for Holographic BCFT, JHEP, 04, 089 (2017) · Zbl 1378.81109 · doi:10.1007/JHEP04(2017)089
[88] Miao, R-X, Holographic BCFT with Dirichlet Boundary Condition, JHEP, 02, 025 (2019) · Zbl 1411.81186 · doi:10.1007/JHEP02(2019)025
[89] M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, PTEP2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE]. · Zbl 1348.81458
[90] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State Correspondence, Phys. Rev. Lett.115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].
[91] Grado-White, B.; Marolf, D.; Weinberg, SJ, Radial Cutoffs and Holographic Entanglement, JHEP, 01, 009 (2021) · Zbl 1459.83047 · doi:10.1007/JHEP01(2021)009
[92] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett.119 (2017) 071602 [arXiv:1703.00456] [INSPIRE]. · Zbl 1383.81189
[93] Caputa, P.; Kundu, N.; Miyaji, M.; Takayanagi, T.; Watanabe, K., Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP, 11, 097 (2017) · Zbl 1383.81189 · doi:10.1007/JHEP11(2017)097
[94] H.A. Camargo, M.P. Heller, R. Jefferson and J. Knaute, Path integral optimization as circuit complexity, Phys. Rev. Lett.123 (2019) 011601 [arXiv:1904.02713] [INSPIRE].
[95] J. Boruch, P. Caputa and T. Takayanagi, Path-Integral Optimization from Hartle-Hawking Wave Function, Phys. Rev. D103 (2021) 046017 [arXiv:2011.08188] [INSPIRE]. · Zbl 1468.83036
[96] Boruch, J.; Caputa, P.; Ge, D.; Takayanagi, T., Holographic path-integral optimization, JHEP, 07, 016 (2021) · Zbl 1468.83036 · doi:10.1007/JHEP07(2021)016
[97] Takayanagi, T., Holographic Spacetimes as Quantum Circuits of Path-Integrations, JHEP, 12, 048 (2018) · Zbl 1405.83015 · doi:10.1007/JHEP12(2018)048
[98] Shimaji, T.; Takayanagi, T.; Wei, Z., Holographic Quantum Circuits from Splitting/Joining Local Quenches, JHEP, 03, 165 (2019) · Zbl 1414.81219 · doi:10.1007/JHEP03(2019)165
[99] Chandra, AR; de Boer, J.; Flory, M.; Heller, MP; Hörtner, S.; Rolph, A., Spacetime as a quantum circuit, JHEP, 21, 207 (2021) · Zbl 1462.81122 · doi:10.1007/JHEP04(2021)207
[100] X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
[101] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP, 06, 149 (2015) · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[102] Hayden, P.; Nezami, S.; Qi, X-L; Thomas, N.; Walter, M.; Yang, Z., Holographic duality from random tensor networks, JHEP, 11, 009 (2016) · Zbl 1390.83344 · doi:10.1007/JHEP11(2016)009
[103] Bao, N.; Penington, G.; Sorce, J.; Wall, AC, Beyond Toy Models: Distilling Tensor Networks in Full AdS/CFT, JHEP, 11, 069 (2019) · Zbl 1429.81063 · doi:10.1007/JHEP11(2019)069
[104] Marolf, D.; Maxfield, H., Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP, 08, 044 (2020) · Zbl 1454.83042 · doi:10.1007/JHEP08(2020)044
[105] K. Langhoff and Y. Nomura, Ensemble from Coarse Graining: Reconstructing the Interior of an Evaporating Black Hole, Phys. Rev. D102 (2020) 086021 [arXiv:2008.04202] [INSPIRE].
[106] Y. Nomura, Black Hole Interior in Unitary Gauge Construction, Phys. Rev. D103 (2021) 066011 [arXiv:2010.15827] [INSPIRE].
[107] D. Neuenfeld, Homology conditions for RT surfaces in double holography, Class. Quant. Grav.39 (2022) 075009 [arXiv:2105.01130] [INSPIRE]. · Zbl 1486.83115
[108] Penington, G., Entanglement Wedge Reconstruction and the Information Paradox, JHEP, 09, 002 (2020) · Zbl 1454.81039 · doi:10.1007/JHEP09(2020)002
[109] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063 (2019) · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[110] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149 (2020) · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[111] Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013 (2020) · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[112] Penington, G.; Shenker, SH; Stanford, D.; Yang, Z., Replica wormholes and the black hole interior, JHEP, 03, 205 (2022) · Zbl 1522.83227 · doi:10.1007/JHEP03(2022)205
[113] J.F. Pedraza, A. Svesko, W. Sybesma and M.R. Visser, Microcanonical action and the entropy of Hawking radiation, Phys. Rev. D105 (2022) 126010 [arXiv:2111.06912] [INSPIRE].
[114] J. McNamara and C. Vafa, Baby Universes, Holography, and the Swampland, arXiv:2004.06738 [INSPIRE].
[115] J.J. Heckman, A.P. Turner and X. Yu, Disorder averaging and its UV discontents, Phys. Rev. D105 (2022) 086021 [arXiv:2111.06404] [INSPIRE].
[116] V. Balasubramanian, M.B. McDermott and M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory, Phys. Rev. D86 (2012) 045014 [arXiv:1108.3568] [INSPIRE].
[117] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D61 (2000) 044007 [hep-th/9906226] [INSPIRE].
[118] J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D62 (2000) 044041 [hep-th/0002111] [INSPIRE].
[119] Grozdanov, S., Wilsonian Renormalisation and the Exact Cut-Off Scale from Holographic Duality, JHEP, 06, 079 (2012) · doi:10.1007/JHEP06(2012)079
[120] Kiritsis, E.; Li, W.; Nitti, F., Holographic RG flow and the Quantum Effective Action, Fortsch. Phys., 62, 389 (2014) · Zbl 1338.81275 · doi:10.1002/prop.201400007
[121] Agón, CA; Guijosa, A.; Pedraza, JF, Radiation and a dynamical UV/IR connection in AdS/CFT, JHEP, 06, 043 (2014) · doi:10.1007/JHEP06(2014)043
[122] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690 (1999) · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[123] Verlinde, HL, Holography and compactification, Nucl. Phys. B, 580, 264 (2000) · Zbl 0992.83071 · doi:10.1016/S0550-3213(00)00224-8
[124] S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D63 (2001) 084017 [hep-th/9912001] [INSPIRE].
[125] Geng, H.; Karch, A., Massive islands, JHEP, 09, 121 (2020) · Zbl 1454.83113 · doi:10.1007/JHEP09(2020)121
[126] H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane, JHEP10 (2020) 166 [arXiv:2006.04851] [INSPIRE]. · Zbl 1456.81332
[127] H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum Extremal Islands Made Easy, Part II: Black Holes on the Brane, JHEP12 (2020) 025 [arXiv:2010.00018] [INSPIRE]. · Zbl 1457.81084
[128] Omiya, H.; Wei, Z., Causal structures and nonlocality in double holography, JHEP, 07, 128 (2022) · Zbl 1522.83223 · doi:10.1007/JHEP07(2022)128
[129] Geng, H., Information Transfer with a Gravitating Bath, SciPost Phys., 10, 103 (2021) · doi:10.21468/SciPostPhys.10.5.103
[130] Geng, H., Inconsistency of islands in theories with long-range gravity, JHEP, 01, 182 (2022) · Zbl 1521.83109 · doi:10.1007/JHEP01(2022)182
[131] D. Harlow, Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP01 (2016) 122 [arXiv:1510.07911] [INSPIRE]. · Zbl 1388.83255
[132] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102 (2016) · Zbl 1390.83016 · doi:10.1007/JHEP09(2016)102
[133] D.L. Jafferis, Bulk reconstruction and the Hartle-Hawking wavefunction, arXiv:1703.01519 [INSPIRE].
[134] Gomes, H.; Hopfmüller, F.; Riello, A., A unified geometric framework for boundary charges and dressings: non-Abelian theory and matter, Nucl. Phys. B, 941, 249 (2019) · Zbl 1415.81042 · doi:10.1016/j.nuclphysb.2019.02.020
[135] Dong, X.; Harlow, D.; Marolf, D., Flat entanglement spectra in fixed-area states of quantum gravity, JHEP, 10, 240 (2019) · Zbl 1427.83020 · doi:10.1007/JHEP10(2019)240
[136] Akers, C.; Rath, P., Holographic Renyi Entropy from Quantum Error Correction, JHEP, 05, 052 (2019) · Zbl 1416.83095 · doi:10.1007/JHEP05(2019)052
[137] Giddings, SB; Kinsella, A., Gauge-invariant observables, gravitational dressings, and holography in AdS, JHEP, 11, 074 (2018) · Zbl 1404.81227 · doi:10.1007/JHEP11(2018)074
[138] W. Donnelly and S.B. Giddings, Gravitational splitting at first order: Quantum information localization in gravity, Phys. Rev. D98 (2018) 086006 [arXiv:1805.11095] [INSPIRE].
[139] S.B. Giddings, Gravitational dressing, soft charges, and perturbative gravitational splitting, Phys. Rev. D100 (2019) 126001 [arXiv:1903.06160] [INSPIRE].
[140] S. Giddings and S. Weinberg, Gauge-invariant observables in gravity and electromagnetism: black hole backgrounds and null dressings, Phys. Rev. D102 (2020) 026010 [arXiv:1911.09115] [INSPIRE].
[141] S.B. Giddings, Gravitational dressing, soft charges, and perturbative gravitational splitting, Phys. Rev. D100 (2019) 126001 [arXiv:1903.06160] [INSPIRE].
[142] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP11 (2020) 026 [arXiv:2006.12527] [INSPIRE]. · Zbl 1460.83030
[143] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part II. Corner metric and Lorentz charges, JHEP11 (2020) 027 [arXiv:2007.03563] [INSPIRE]. · Zbl 1456.83024
[144] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part III. Corner simplicity constraints, JHEP01 (2021) 100 [arXiv:2007.12635] [INSPIRE]. · Zbl 1459.83016
[145] Donnelly, W.; Freidel, L.; Moosavian, SF; Speranza, AJ, Gravitational edge modes, coadjoint orbits, and hydrodynamics, JHEP, 09, 008 (2021) · Zbl 1472.83011 · doi:10.1007/JHEP09(2021)008
[146] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., Extended corner symmetry, charge bracket and Einstein’s equations, JHEP, 09, 083 (2021) · Zbl 1472.83012 · doi:10.1007/JHEP09(2021)083
[147] L. Freidel, A canonical bracket for open gravitational system, arXiv:2111.14747 [INSPIRE].
[148] Laddha, A.; Prabhu, SG; Raju, S.; Shrivastava, P., The Holographic Nature of Null Infinity, SciPost Phys., 10, 041 (2021) · doi:10.21468/SciPostPhys.10.2.041
[149] Chowdhury, C.; Papadoulaki, O.; Raju, S., A physical protocol for observers near the boundary to obtain bulk information in quantum gravity, SciPost Phys., 10, 106 (2021) · doi:10.21468/SciPostPhys.10.5.106
[150] Chowdhury, C.; Godet, V.; Papadoulaki, O.; Raju, S., Holography from the Wheeler-DeWitt equation, JHEP, 03, 019 (2022) · Zbl 1522.83060 · doi:10.1007/JHEP03(2022)019
[151] S. Raju, Failure of the split property in gravity and the information paradox, Class. Quant. Grav.39 (2022) 064002 [arXiv:2110.05470] [INSPIRE]. · Zbl 1495.83009
[152] S.B. Giddings, On the questions of asymptotic recoverability of information and subsystems in quantum gravity, arXiv:2112.03207 [INSPIRE].
[153] Wilson, KG; Kogut, JB, The renormalization group and the ϵ-expansion, Phys. Rept., 12, 75 (1974) · doi:10.1016/0370-1573(74)90023-4
[154] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
[155] A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D59 (1999) 065011 [hep-th/9809022] [INSPIRE].
[156] Akhmedov, ET, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B, 442, 152 (1998) · Zbl 1002.81538 · doi:10.1016/S0370-2693(98)01270-2
[157] Balasubramanian, V.; Kraus, P., Space-time and the holographic renormalization group, Phys. Rev. Lett., 83, 3605 (1999) · Zbl 0958.81046 · doi:10.1103/PhysRevLett.83.3605
[158] de Boer, J.; Verlinde, EP; Verlinde, HL, On the holographic renormalization group, JHEP, 08, 003 (2000) · Zbl 0989.81538 · doi:10.1088/1126-6708/2000/08/003
[159] Lee, S-S, Holographic description of quantum field theory, Nucl. Phys. B, 832, 567 (2010) · Zbl 1204.81130 · doi:10.1016/j.nuclphysb.2010.02.022
[160] M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].
[161] V. Shyam, General Covariance from the Quantum Renormalization Group, Phys. Rev. D95 (2017) 066003 [arXiv:1611.05315] [INSPIRE].
[162] K.-S. Kim, S. Ryu and K. Lee, Emergent dual holographic description as a nonperturbative generalization of the Wilsonian renormalization group, Phys. Rev. D105 (2022) 086019 [arXiv:2112.06237] [INSPIRE].
[163] J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B231 (1984) 269 [INSPIRE].
[164] V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D59 (1999) 046003 [hep-th/9805171] [INSPIRE].
[165] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett.101 (2008) 081601 [arXiv:0805.0150] [INSPIRE]. · Zbl 1228.81244
[166] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP05 (2009) 085 [arXiv:0812.2909] [INSPIRE].
[167] Imbimbo, C.; Schwimmer, A.; Theisen, S.; Yankielowicz, S., Diffeomorphisms and holographic anomalies, Class. Quant. Grav., 17, 1129 (2000) · Zbl 0952.81052 · doi:10.1088/0264-9381/17/5/322
[168] H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B363 (1991) 486 [INSPIRE].
[169] Melo, JF; Santos, JE, Developing local RG: quantum RG and BFSS, JHEP, 05, 063 (2020) · Zbl 1437.81041 · doi:10.1007/JHEP05(2020)063
[170] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
[171] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
[172] O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev. D84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].
[173] L. Berdichevsky and B.-e. Dahan, Local gravitational solutions dual to M2-branes intersecting and/or ending on M5-branes, JHEP08 (2013) 061 [arXiv:1304.4389] [INSPIRE]. · Zbl 1342.83327
[174] Assel, B.; Bachas, C.; Estes, J.; Gomis, J., Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP, 08, 087 (2011) · Zbl 1298.81237 · doi:10.1007/JHEP08(2011)087
[175] Bachas, C.; D’Hoker, E.; Estes, J.; Krym, D., M-theory Solutions Invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys., 62, 207 (2014) · Zbl 1338.81310 · doi:10.1002/prop.201300039
[176] Chiodaroli, M.; D’Hoker, E.; Gutperle, M., Simple Holographic Duals to Boundary CFTs, JHEP, 02, 005 (2012) · Zbl 1309.81206 · doi:10.1007/JHEP02(2012)005
[177] Chiodaroli, M.; D’Hoker, E.; Gutperle, M., Holographic duals of Boundary CFTs, JHEP, 07, 177 (2012) · Zbl 1397.83134 · doi:10.1007/JHEP07(2012)177
[178] P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, Phys. Rev. D87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
[179] Bao, N.; Nezami, S.; Ooguri, H.; Stoica, B.; Sully, J.; Walter, M., The Holographic Entropy Cone, JHEP, 09, 130 (2015) · Zbl 1388.83177 · doi:10.1007/JHEP09(2015)130
[180] S. Hernández Cuenca, Holographic entropy cone for five regions, Phys. Rev. D100 (2019) 026004 [arXiv:1903.09148] [INSPIRE].
[181] He, T.; Headrick, M.; Hubeny, VE, Holographic Entropy Relations Repackaged, JHEP, 10, 118 (2019) · Zbl 1427.83082 · doi:10.1007/JHEP10(2019)118
[182] He, T.; Headrick, M.; Hubeny, VE, Holographic Entropy Relations Repackaged, JHEP, 10, 118 (2019) · Zbl 1427.83082 · doi:10.1007/JHEP10(2019)118
[183] He, T.; Hubeny, VE; Rangamani, M., Superbalance of Holographic Entropy Inequalities, JHEP, 07, 245 (2020) · Zbl 1451.81347 · doi:10.1007/JHEP07(2020)245
[184] Reeves, W.; Rozali, M.; Simidzija, P.; Sully, J.; Waddell, C.; Wakeham, D., Looking for (and not finding) a bulk brane, JHEP, 12, 002 (2021) · Zbl 1521.81329 · doi:10.1007/JHEP12(2021)002
[185] Parattu, K.; Chakraborty, S.; Majhi, BR; Padmanabhan, T., A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav., 48, 94 (2016) · Zbl 1386.83018 · doi:10.1007/s10714-016-2093-7
[186] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
[187] Klebanov, IR; Witten, E., AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B, 556, 89 (1999) · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[188] E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
[189] Berkooz, M.; Sever, A.; Shomer, A., ‘Double trace’ deformations, boundary conditions and space-time singularities, JHEP, 05, 034 (2002) · doi:10.1088/1126-6708/2002/05/034
[190] Sever, A.; Shomer, A., A note on multitrace deformations and AdS/CFT, JHEP, 07, 027 (2002) · doi:10.1088/1126-6708/2002/07/027
[191] A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav.21 (2004) 2981 [hep-th/0402184] [INSPIRE]. · Zbl 1064.83006
[192] Marolf, D.; Ross, SF, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP, 11, 085 (2006) · doi:10.1088/1126-6708/2006/11/085
[193] G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav.25 (2008) 195014 [arXiv:0805.1902] [INSPIRE]. · Zbl 1151.83305
[194] Ecker, C.; van der Schee, W.; Mateos, D.; Casalderrey-Solana, J., Holographic evolution with dynamical boundary gravity, JHEP, 03, 137 (2022) · Zbl 1522.83287 · doi:10.1007/JHEP03(2022)137
[195] Brink, L.; Henneaux, M., Principles of String Theory (1988), New York, U.S.A.: Plenum Press, New York, U.S.A. · doi:10.1007/978-1-4613-0909-3
[196] Casini, H.; Huerta, M., Remarks on the entanglement entropy for disconnected regions, JHEP, 03, 048 (2009) · doi:10.1088/1126-6708/2009/03/048
[197] Y. Nakata, T. Takayanagi, Y. Taki, K. Tamaoka and Z. Wei, New holographic generalization of entanglement entropy, Phys. Rev. D103 (2021) 026005 [arXiv:2005.13801] [INSPIRE].
[198] Myers, RC; Rao, J.; Sugishita, S., Holographic Holes in Higher Dimensions, JHEP, 06, 044 (2014) · doi:10.1007/JHEP06(2014)044
[199] Czech, B.; Dong, X.; Sully, J., Holographic Reconstruction of General Bulk Surfaces, JHEP, 11, 015 (2014) · Zbl 1333.83070 · doi:10.1007/JHEP11(2014)015
[200] Hubeny, VE, Covariant Residual Entropy, JHEP, 09, 156 (2014) · Zbl 1333.81290 · doi:10.1007/JHEP09(2014)156
[201] Headrick, M.; Myers, RC; Wien, J., Holographic Holes and Differential Entropy, JHEP, 10, 149 (2014) · Zbl 1333.83189 · doi:10.1007/JHEP10(2014)149
[202] B. Czech and L. Lamprou, Holographic definition of points and distances, Phys. Rev. D90 (2014) 106005 [arXiv:1409.4473] [INSPIRE].
[203] Czech, B.; Hayden, P.; Lashkari, N.; Swingle, B., The Information Theoretic Interpretation of the Length of a Curve, JHEP, 06, 157 (2015) · Zbl 1388.83216 · doi:10.1007/JHEP06(2015)157
[204] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Integral Geometry and Holography, JHEP, 10, 175 (2015) · Zbl 1388.83217 · doi:10.1007/JHEP10(2015)175
[205] Espíndola, R.; Güijosa, A.; Landetta, A.; Pedraza, JF, What’s the point? Hole-ography in Poincaré AdS, Eur. Phys. J. C, 78, 75 (2018) · doi:10.1140/epjc/s10052-018-5563-0
[206] Balasubramanian, V.; Rabideau, C., The dual of non-extremal area: differential entropy in higher dimensions, JHEP, 09, 051 (2020) · Zbl 1454.83031 · doi:10.1007/JHEP09(2020)051
[207] B. Czech, Y.D. Olivas and Z.-z. Wang, Holographic integral geometry with time dependence, JHEP12 (2020) 063 [arXiv:1905.07413] [INSPIRE]. · Zbl 1457.83056
[208] Czech, B.; Lamprou, L.; McCandlish, S.; Mosk, B.; Sully, J., A Stereoscopic Look into the Bulk, JHEP, 07, 129 (2016) · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[209] de Boer, J.; Haehl, FM; Heller, MP; Myers, RC, Entanglement, holography and causal diamonds, JHEP, 08, 162 (2016) · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[210] Donald, MJ, On the relative entropy, Commun. Math. Phys., 105, 13 (1986) · Zbl 0594.46059 · doi:10.1007/BF01212339
[211] Bao, N.; Halpern, IF, Holographic Inequalities and Entanglement of Purification, JHEP, 03, 006 (2018) · Zbl 1388.81626 · doi:10.1007/JHEP03(2018)006
[212] N. Bao and I.F. Halpern, Conditional and Multipartite Entanglements of Purification and Holography, Phys. Rev. D99 (2019) 046010 [arXiv:1805.00476] [INSPIRE].
[213] Umemoto, K.; Zhou, Y., Entanglement of Purification for Multipartite States and its Holographic Dual, JHEP, 10, 152 (2018) · Zbl 1402.81233 · doi:10.1007/JHEP10(2018)152
[214] J. Kudler-Flam and S. Ryu, Entanglement negativity and minimal entanglement wedge cross sections in holographic theories, Phys. Rev. D99 (2019) 106014 [arXiv:1808.00446] [INSPIRE].
[215] Y. Kusuki, J. Kudler-Flam and S. Ryu, Derivation of holographic negativity in AdS_3/CFT_2, Phys. Rev. Lett.123 (2019) 131603 [arXiv:1907.07824] [INSPIRE]. · Zbl 1436.81116
[216] K. Tamaoka, Entanglement Wedge Cross Section from the Dual Density Matrix, Phys. Rev. Lett.122 (2019) 141601 [arXiv:1809.09109] [INSPIRE].
[217] Dutta, S.; Faulkner, T., A canonical purification for the entanglement wedge cross-section, JHEP, 03, 178 (2021) · Zbl 1461.81104 · doi:10.1007/JHEP03(2021)178
[218] P. Caputa, M. Miyaji, T. Takayanagi and K. Umemoto, Holographic Entanglement of Purification from Conformal Field Theories, Phys. Rev. Lett.122 (2019) 111601 [arXiv:1812.05268] [INSPIRE].
[219] Haberman, R., Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (2012), London, U.K.: Pearson, London, U.K.
[220] J. Kastikainen and S. Shashi, Structure of holographic BCFT correlators from geodesics, Phys. Rev. D105 (2022) 046007 [arXiv:2109.00079] [INSPIRE].
[221] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
[222] Agón, C.; Faulkner, T., Quantum Corrections to Holographic Mutual Information, JHEP, 08, 118 (2016) · Zbl 1390.81060 · doi:10.1007/JHEP08(2016)118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.