×

Holographic integral geometry with time dependence. (English) Zbl 1457.83056

Summary: We write down Crofton formulas – expressions that compute lengths of space-like curves in asymptotically \(\mathrm{AdS}_3\) geometries as integrals over kinematic space – which apply when the curve and/or the background spacetime is time-dependent. Relative to their static predecessor, the time-dependent Crofton formulas display several new features, whose origin is the local null rotation symmetry of the bulk geometry. In pure \(\mathrm{AdS}_3\) where null rotations are global symmetries, the Crofton formulas simplify and become integrals over the null planes, which intersect the bulk curve.

MSC:

83E05 Geometrodynamics and the holographic principle
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[2] Ryu, S.; Takayanagi, T., Aspects of Holographic Entanglement Entropy, JHEP, 08, 045 (2006) · doi:10.1088/1126-6708/2006/08/045
[3] Hubeny, VE; Rangamani, M.; Takayanagi, T., A Covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[4] Wall, AC, Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav., 31, 225007 (2014) · Zbl 1304.81139 · doi:10.1088/0264-9381/31/22/225007
[5] Bao, N.; Nezami, S.; Ooguri, H.; Stoica, B.; Sully, J.; Walter, M., The Holographic Entropy Cone, JHEP, 09, 130 (2015) · Zbl 1388.83177 · doi:10.1007/JHEP09(2015)130
[6] Czech, B.; Dong, X., Holographic Entropy Cone with Time Dependence in Two Dimensions, JHEP, 10, 177 (2019) · Zbl 1427.81123 · doi:10.1007/JHEP10(2019)177
[7] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
[8] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP, 06, 149 (2015) · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[9] Hayden, P.; Nezami, S.; Qi, X-L; Thomas, N.; Walter, M.; Yang, Z., Holographic duality from random tensor networks, JHEP, 11, 009 (2016) · Zbl 1390.83344 · doi:10.1007/JHEP11(2016)009
[10] May, A., Tensor networks for dynamic spacetimes, JHEP, 06, 118 (2017) · Zbl 1380.83068 · doi:10.1007/JHEP06(2017)118
[11] Freedman, M.; Headrick, M., Bit threads and holographic entanglement, Commun. Math. Phys., 352, 407 (2017) · Zbl 1425.81014 · doi:10.1007/s00220-016-2796-3
[12] M. Headrick, online.kitp.ucsb.edu/online/qinfo_c17/headrick/pdf/Headrick_QInfo17Conf_KITP.pdf.
[13] Headrick, M.; Hubeny, VE, Riemannian and Lorentzian flow-cut theorems, Class. Quant. Grav., 35, 10 (2018) · Zbl 1391.83016 · doi:10.1088/1361-6382/aab83c
[14] V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].
[15] Headrick, M.; Myers, RC; Wien, J., Holographic Holes and Differential Entropy, JHEP, 10, 149 (2014) · Zbl 1333.83189 · doi:10.1007/JHEP10(2014)149
[16] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Integral Geometry and Holography, JHEP, 10, 175 (2015) · Zbl 1388.83217 · doi:10.1007/JHEP10(2015)175
[17] Czech, B.; Lamprou, L., Holographic definition of points and distances, Phys. Rev. D, 90, 106005 (2014) · doi:10.1103/PhysRevD.90.106005
[18] Czech, B.; Hayden, P.; Lashkari, N.; Swingle, B., The Information Theoretic Interpretation of the Length of a Curve, JHEP, 06, 157 (2015) · Zbl 1388.83216 · doi:10.1007/JHEP06(2015)157
[19] J. de Boer, M.P. Heller, R.C. Myers and Y. Neiman, Holographic de Sitter Geometry from Entanglement in Conformal Field Theory, Phys. Rev. Lett.116 (2016) 061602 [arXiv:1509.00113] [INSPIRE].
[20] B. Czech et al., Tensor network quotient takes the vacuum to the thermal state, Phys. Rev. B94 (2016) 085101 [arXiv:1510.07637] [INSPIRE].
[21] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Tensor Networks from Kinematic Space, JHEP, 07, 100 (2016) · Zbl 1390.83102 · doi:10.1007/JHEP07(2016)100
[22] Asplund, CT; Callebaut, N.; Zukowski, C., Equivalence of Emergent de Sitter Spaces from Conformal Field Theory, JHEP, 09, 154 (2016) · Zbl 1390.83079 · doi:10.1007/JHEP09(2016)154
[23] Czech, B.; Lamprou, L.; McCandlish, S.; Mosk, B.; Sully, J., A Stereoscopic Look into the Bulk, JHEP, 07, 129 (2016) · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[24] de Boer, J.; Haehl, FM; Heller, MP; Myers, RC, Entanglement, holography and causal diamonds, JHEP, 08, 162 (2016) · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[25] Karch, A.; Sully, J.; Uhlemann, CF; Walker, DGE, Boundary Kinematic Space, JHEP, 08, 039 (2017) · Zbl 1381.81116 · doi:10.1007/JHEP08(2017)039
[26] B. Czech, Einstein Equations from Varying Complexity, Phys. Rev. Lett.120 (2018) 031601 [arXiv:1706.00965] [INSPIRE].
[27] R. Espíndola, A. Güijosa, A. Landetta and J.F. Pedraza, What’s the point? Hole-ography in Poincaré AdS, Eur. Phys. J. C78 (2018) 75 [arXiv:1708.02958] [INSPIRE].
[28] Cresswell, JC; Peet, AW, Kinematic space for conical defects, JHEP, 11, 155 (2017) · Zbl 1383.81198 · doi:10.1007/JHEP11(2017)155
[29] Abt, R., Topological Complexity in AdS_3/CFT_2, Fortsch. Phys., 66, 1800034 (2018) · Zbl 1535.81213 · doi:10.1002/prop.201800034
[30] B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry Connection for Entangled Subregions in AdS/CFT, Phys. Rev. Lett.120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].
[31] Abt, R.; Erdmenger, J.; Gerbershagen, M.; Melby-Thompson, CM; Northe, C., Holographic Subregion Complexity from Kinematic Space, JHEP, 01, 012 (2019) · Zbl 1409.83083 · doi:10.1007/JHEP01(2019)012
[32] B. Czech, L. Lamprou and L. Susskind, Entanglement Holonomies, arXiv:1807.04276 [INSPIRE].
[33] Callebaut, N., The gravitational dynamics of kinematic space, JHEP, 02, 153 (2019) · Zbl 1411.83070 · doi:10.1007/JHEP02(2019)153
[34] Cresswell, JC; Jardine, IT; Peet, AW, Holographic relations for OPE blocks in excited states, JHEP, 03, 058 (2019) · Zbl 1414.81200 · doi:10.1007/JHEP03(2019)058
[35] Penna, RF; Zukowski, C., Kinematic space and the orbit method, JHEP, 07, 045 (2019) · Zbl 1418.81079 · doi:10.1007/JHEP07(2019)045
[36] Czech, B.; De Boer, J.; Ge, D.; Lamprou, L., A modular sewing kit for entanglement wedges, JHEP, 11, 094 (2019) · Zbl 1429.83077 · doi:10.1007/JHEP11(2019)094
[37] De Boer, J.; Lamprou, L., Holographic Order from Modular Chaos, JHEP, 06, 024 (2020) · Zbl 1437.83107 · doi:10.1007/JHEP06(2020)024
[38] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav.17 (2000) 4999 [gr-qc/0007021] [INSPIRE]. · Zbl 0972.83015
[39] Simon, J., The Geometry of null rotation identifications, JHEP, 06, 001 (2002) · doi:10.1088/1126-6708/2002/06/001
[40] Lieb, EH; Ruskai, MB, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys., 14, 1938 (1973) · doi:10.1063/1.1666274
[41] Headrick, M.; Takayanagi, T., A Holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D, 76, 106013 (2007) · doi:10.1103/PhysRevD.76.106013
[42] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[43] Brown, J.; Henneaux, M., Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys., 104, 207 (1986) · Zbl 0584.53039 · doi:10.1007/BF01211590
[44] N. Engelhardt and G.T. Horowitz, Towards a Reconstruction of General Bulk Metrics, Class. Quant. Grav.34 (2017) 015004 [arXiv:1605.01070] [INSPIRE]. · Zbl 1354.83050
[45] Maldacena, J.; Simmons-Duffin, D.; Zhiboedov, A., Looking for a bulk point, JHEP, 01, 013 (2017) · Zbl 1373.81335 · doi:10.1007/JHEP01(2017)013
[46] G. Solanes, Integral geometry and curvature integrals in hyperbolic space, Ph.D. Thesis, Universitat Autonoma de Barcelona, Barcelona Spain (2003).
[47] M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc.484 (1999) 147 [hep-th/9901148] [INSPIRE]. · Zbl 1162.83342
[48] Sheikh-Jabbari, MM; Yavartanoo, H., On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS3 geometries, Eur. Phys. J. C, 76, 493 (2016) · doi:10.1140/epjc/s10052-016-4326-z
[49] Sheikh-Jabbari, MM; Yavartanoo, H., Excitation entanglement entropy in two dimensional conformal field theories, Phys. Rev. D, 94, 126006 (2016) · doi:10.1103/PhysRevD.94.126006
[50] Roberts, MM, Time evolution of entanglement entropy from a pulse, JHEP, 12, 027 (2012) · doi:10.1007/JHEP12(2012)027
[51] Balasubramanian, V.; Chowdhury, BD; Czech, B.; de Boer, J., Entwinement and the emergence of spacetime, JHEP, 01, 048 (2015) · Zbl 1388.83633 · doi:10.1007/JHEP01(2015)048
[52] Berry, MV, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A, 392, 45 (1984) · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[53] Wilczek, F.; Zee, A., Appearance of Gauge Structure in Simple Dynamical Systems, Phys. Rev. Lett., 52, 2111 (1984) · doi:10.1103/PhysRevLett.52.2111
[54] B. Czech and Z. Wang, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.