×

The \(F\)-theorem in the melonic limit. (English) Zbl 1522.81453

Summary: The \(F\)-theorem states that in three dimensions the sphere free energy of a field theory must decrease between ultraviolet and infrared fixed points of the renormalization group flow, and it has been proven for unitary conformal field theories (CFTs).
We consider here the long-range bosonic \(O(N)^3\) model on a spherical background, at next-to-next-to-leading order of the \(1/N\) expansion. The model displays four large-\(N\) fixed points and we test and confirm the \(F\)-theorem holds in this case. This is non-trivial as one of the couplings is imaginary, and therefore the model is non-unitary at finite \(N\). Despite this, several tests indicating that the large-\(N\) CFTs are in fact unitary have been performed: for instance all the OPE coefficients computed so far in the large-\(N\) limit are real, and the spectrum of bilinear operators is real and above unitarity bounds. Our result, namely that the \(F\) theorem holds at large \(N\), can be viewed as further indication that such theories are unitary.
As an added bonus, we show how conformal partial waves expansions in conformal field theory can be used to resum infinite classes of vacuum diagrams. Non-perturbatively, the jump in the value of the free energy has the interpretation of the inclusion at the ultraviolet fixed point of an extra non-normalizable contribution in the conformal partial wave expansion. This can be seen in perturbation theory as the reversal of the sign of an infinite class of diagrams due to the flow of a coupling constant.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T10 Model quantum field theories
81T20 Quantum field theory on curved space or space-time backgrounds

References:

[1] A. B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz.43 (1986) 565] [INSPIRE].
[2] Komargodski, Z.; Schwimmer, A., On Renormalization Group Flows in Four Dimensions, JHEP, 12, 099 (2011) · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[3] Jafferis, DL; Klebanov, IR; Pufu, SS; Safdi, BR, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP, 06, 102 (2011) · Zbl 1298.81304 · doi:10.1007/JHEP06(2011)102
[4] Klebanov, IR; Pufu, SS; Safdi, BR, F-Theorem without Supersymmetry, JHEP, 10, 038 (2011) · Zbl 1303.81127 · doi:10.1007/JHEP10(2011)038
[5] Cardy, JL, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B, 215, 749 (1988) · doi:10.1016/0370-2693(88)90054-8
[6] Komargodski, Z., The Constraints of Conformal Symmetry on RG Flows, JHEP, 07, 069 (2012) · Zbl 1397.81383 · doi:10.1007/JHEP07(2012)069
[7] Jafferis, DL, The Exact Superconformal R-Symmetry Extremizes Z, JHEP, 05, 159 (2012) · Zbl 1348.81420 · doi:10.1007/JHEP05(2012)159
[8] Pufu, SS, The F-Theorem and F-Maximization, J. Phys. A, 50 (2017) · Zbl 1386.81122 · doi:10.1088/1751-8121/aa6765
[9] Casini, H.; Huerta, M., On the RG running of the entanglement entropy of a circle, Phys. Rev. D, 85 (2012) · Zbl 1397.81034 · doi:10.1103/PhysRevD.85.125016
[10] Casini, H.; Huerta, M.; Myers, RC, Towards a derivation of holographic entanglement entropy, JHEP, 05, 036 (2011) · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[11] Casini, H.; Huerta, M., A Finite entanglement entropy and the c-theorem, Phys. Lett. B, 600, 142 (2004) · Zbl 1247.81021 · doi:10.1016/j.physletb.2004.08.072
[12] Casini, H.; Testé, E.; Torroba, G., Markov Property of the Conformal Field Theory Vacuum and the a Theorem, Phys. Rev. Lett., 118 (2017) · Zbl 1376.81066 · doi:10.1103/PhysRevLett.118.261602
[13] Giombi, S.; Klebanov, IR, Interpolating between a and F, JHEP, 03, 117 (2015) · Zbl 1388.81383 · doi:10.1007/JHEP03(2015)117
[14] Fei, L.; Giombi, S.; Klebanov, IR; Tarnopolsky, G., Generalized F -Theorem and the ϵ Expansion, JHEP, 12, 155 (2015) · Zbl 1387.81274
[15] Giombi, S.; Klebanov, IR; Tarnopolsky, G., Conformal QED_d, F -Theorem and the ϵ Expansion, J. Phys. A, 49 (2016) · Zbl 1348.81454 · doi:10.1088/1751-8113/49/13/135403
[16] Hogervorst, M.; Rychkov, S.; van Rees, BC, Unitarity violation at the Wilson-Fisher fixed point in 4 − ϵ dimensions, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.125025
[17] Paulos, MF; Rychkov, S.; van Rees, BC; Zan, B., Conformal Invariance in the Long-Range Ising Model, Nucl. Phys. B, 902, 246 (2016) · Zbl 1332.82017 · doi:10.1016/j.nuclphysb.2015.10.018
[18] D. Gaiotto, Boundary F-maximization, arXiv:1403.8052 [INSPIRE]. · Zbl 1452.81163
[19] Kobayashi, N.; Nishioka, T.; Sato, Y.; Watanabe, K., Towards a C-theorem in defect CFT, JHEP, 01, 039 (2019) · Zbl 1409.81124 · doi:10.1007/JHEP01(2019)039
[20] Maldacena, J.; Zhiboedov, A., Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A, 46 (2013) · Zbl 1339.81089 · doi:10.1088/1751-8113/46/21/214011
[21] Binder, DJ; Rychkov, S., Deligne Categories in Lattice Models and Quantum Field Theory, or Making Sense of O(N) Symmetry with Non-integer N, JHEP, 04, 117 (2020) · Zbl 1436.81099 · doi:10.1007/JHEP04(2020)117
[22] Benedetti, D.; Gurau, R.; Harribey, S., Line of fixed points in a bosonic tensor model, JHEP, 06, 053 (2019) · Zbl 1416.81113 · doi:10.1007/JHEP06(2019)053
[23] Klebanov, IR; Tarnopolsky, G., Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.046004
[24] Gubser, SS, Melonic theories over diverse number systems, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.126007
[25] Giombi, S.; Klebanov, IR; Tarnopolsky, G., Bosonic tensor models at large N and small ϵ, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.106014
[26] Bulycheva, K.; Klebanov, IR; Milekhin, A.; Tarnopolsky, G., Spectra of Operators in Large N Tensor Models, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.026016
[27] Prakash, S.; Sinha, R., A Complex Fermionic Tensor Model in d Dimensions, JHEP, 02, 086 (2018) · Zbl 1387.81330 · doi:10.1007/JHEP02(2018)086
[28] Giombi, S.; Klebanov, IR; Popov, F.; Prakash, S.; Tarnopolsky, G., Prismatic Large N Models for Bosonic Tensors, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.105005
[29] Benedetti, D.; Delporte, N.; Harribey, S.; Sinha, R., Sextic tensor field theories in rank 3 and 5, JHEP, 06, 065 (2020) · Zbl 1437.81068 · doi:10.1007/JHEP06(2020)065
[30] Chang, C-M; Colin-Ellerin, S.; Rangamani, M., On Melonic Supertensor Models, JHEP, 10, 157 (2018) · Zbl 1402.81240 · doi:10.1007/JHEP10(2018)157
[31] Popov, FK, Supersymmetric tensor model at large N and small E, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.026020
[32] D. Lettera and A. Vichi, A large-N tensor model with four supercharges, arXiv:2012.11600 [INSPIRE].
[33] Benedetti, D.; Delporte, N., Remarks on a melonic field theory with cubic interaction, JHEP, 04, 197 (2021) · doi:10.1007/JHEP04(2021)197
[34] I. R. Klebanov, F. Popov and G. Tarnopolsky, TASI Lectures on Large N Tensor Models, PoSTASI2017 (2018) 004 [arXiv:1808.09434] [INSPIRE].
[35] D. Benedetti, Melonic CFTs, PoSCORFU2019 (2020) 168 [arXiv:2004.08616] [INSPIRE].
[36] Benedetti, D.; Gurau, R.; Suzuki, K., Conformal symmetry and composite operators in the O(N)^3tensor field theory, JHEP, 06, 113 (2020) · Zbl 1437.81069 · doi:10.1007/JHEP06(2020)113
[37] D. Benedetti, R. Gurau, S. Harribey and K. Suzuki, Hints of unitarity at large N in the O(N)^3tensor field theory, JHEP02 (2020) 072 [Erratum JHEP08 (2020) 167] [arXiv:1909.07767] [INSPIRE]. · Zbl 1435.81165
[38] Benedetti, D.; Gurau, R.; Harribey, S., Trifundamental quartic model, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.046018
[39] Gubser, SS; Klebanov, IR, A Universal result on central charges in the presence of double trace deformations, Nucl. Phys. B, 656, 23 (2003) · Zbl 1011.81067 · doi:10.1016/S0550-3213(03)00056-7
[40] Sachdev, S.; Ye, J., Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett., 70, 3339 (1993) · doi:10.1103/PhysRevLett.70.3339
[41] A. Kitaev, A simple model of quantum holography, talk given at the Entanglement in Strongly-Correlated Quantum Matter, Santa Barbara, CA, U.S.A., 6 April-2 July 2015.
[42] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.106002
[43] Gross, DJ; Rosenhaus, V., A line of CFTs: from generalized free fields to SYK, JHEP, 07, 086 (2017) · Zbl 1380.81323 · doi:10.1007/JHEP07(2017)086
[44] Behan, C.; Rastelli, L.; Rychkov, S.; Zan, B., A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys. A, 50 (2017) · Zbl 1376.82012 · doi:10.1088/1751-8121/aa8099
[45] Campa, A.; Dauxois, T.; Ruffo, S., Statistical mechanics and dynamics of solvable models with long-range interactions, Phys. Rept., 480, 57 (2009) · doi:10.1016/j.physrep.2009.07.001
[46] Diaz, DE; Dorn, H., Partition functions and double-trace deformations in AdS/CFT, JHEP, 05, 046 (2007) · doi:10.1088/1126-6708/2007/05/046
[47] Benedetti, D.; Gurau, R., 2P I effective action for the SYK model and tensor field theories, JHEP, 05, 156 (2018) · Zbl 1391.81116 · doi:10.1007/JHEP05(2018)156
[48] Berges, J., Introduction to nonequilibrium quantum field theory, AIP Conf. Proc., 739, 3 (2004) · doi:10.1063/1.1843591
[49] Bonzom, V.; Gurau, R.; Riello, A.; Rivasseau, V., Critical behavior of colored tensor models in the large N limit, Nucl. Phys. B, 853, 174 (2011) · Zbl 1229.81222 · doi:10.1016/j.nuclphysb.2011.07.022
[50] Carrozza, S.; Tanasa, A., O(N) Random Tensor Models, Lett. Math. Phys., 106, 1531 (2016) · Zbl 1362.83010 · doi:10.1007/s11005-016-0879-x
[51] Bonzom, V.; Nador, V.; Tanasa, A., Diagrammatics of the quartic O(N)^3-invariant Sachdev-Ye-Kitaev-like tensor model, J. Math. Phys., 60 (2019) · Zbl 1416.81101 · doi:10.1063/1.5095248
[52] Grabner, D.; Gromov, N.; Kazakov, V.; Korchemsky, G., Strongly γ-Deformed \(\mathcal{N} = 4\) Supersymmetric Yang-Mills Theory as an Integrable Conformal Field Theory, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.111601
[53] Kazakov, V.; Olivucci, E., Biscalar Integrable Conformal Field Theories in Any Dimension, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.131601
[54] Karateev, D.; Kravchuk, P.; Simmons-Duffin, D., Harmonic Analysis and Mean Field Theory, JHEP, 10, 217 (2019) · Zbl 1427.81137 · doi:10.1007/JHEP10(2019)217
[55] M. A. Rubin and C. R. Ordonez, Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics, J. Math. Phys.25 (1984) 2888. · Zbl 0575.33005
[56] S. Samko, Hypersingular Integrals and Their Applications, first edition, CRC Press, London U.K. (2002) [doi:10.1201/9781482264968]. · Zbl 0998.42010
[57] Farnsworth, K.; Luty, MA; Prilepina, V., Weyl versus Conformal Invariance in Quantum Field Theory, JHEP, 10, 170 (2017) · Zbl 1383.81209 · doi:10.1007/JHEP10(2017)170
[58] Allen, B.; Jacobson, T., Vector Two Point Functions in Maximally Symmetric Spaces, Commun. Math. Phys., 103, 669 (1986) · Zbl 0632.53060 · doi:10.1007/BF01211169
[59] Dowker, JS; Critchley, R., Effective Lagrangian and Energy Momentum Tensor in de Sitter Space, Phys. Rev. D, 13, 3224 (1976) · doi:10.1103/PhysRevD.13.3224
[60] M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal.20 (2017) 51 [arXiv:1507.07356]. · Zbl 1375.47038
[61] P. Stinga and J. Torrea, Extension problem and harnack’s inequality for some fractional operators, Comm. Part. Differ. Equat.35 (2009) 2092 [arXiv:0910.2569]. · Zbl 1209.26013
[62] Ferrara, S.; Grillo, AF; Parisi, G.; Gatto, R., The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim., 4, 115 (1972) · doi:10.1007/BF02907130
[63] S. Samko, On inversion of fractional spherical potentials by spherical hypersingular operators, in Singular Integral Operators, Factorization and Applications, A. Böttcher, M. A. Kaashoek, A. B. Lebre, A. F. dos Santos and F.-O. Speck eds., Birkhäuser, Basel Switzerland (2003), pp. 357-368. · Zbl 1050.47047
[64] T. Branson, Spectral theory of invariant operators, sharp inequalities, and representation theory, in proceedings of the 16th Winter School “Geometry and Physics”, Srní, Czech Republic, 13-20 January 1996, Circolo Matematico di Palermo, Palermo Italy (1997), pp. 29-54 and online at http://eudml.org/doc/220067. · Zbl 0884.58100
[65] M. del Mar Gonzalez, Recent progress on the fractional Laplacian in conformal geometry, arXiv:1609.08988 [INSPIRE].
[66] T. P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Am. Math. Soc.347 (1995) 3671. · Zbl 0848.58047
[67] P. M. Pavlov and S. G. Samko, Description of spaces \({l}_p^{\alpha}\left({s}_{n-1}\right)\) in terms of spherical hypersingular integrals, Dokl. Akad. Nauk SSSR276 (1984) 546.
[68] Dobrev, VK; Mack, G.; Todorov, IT; Petkova, VB; Petrova, SG, On the Clebsch-Gordan Expansion for the Lorentz Group in n Dimensions, Rept. Math. Phys., 9, 219 (1976) · Zbl 0344.22013 · doi:10.1016/0034-4877(76)90057-4
[69] Dobrev, VK; Petkova, VB; Petrova, SG; Todorov, IT, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev. D, 13, 887 (1976) · doi:10.1103/PhysRevD.13.887
[70] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova and I. T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, in Lecture Notes in Physics63, Springer (1977) [INSPIRE]. · Zbl 0407.43010
[71] Caron-Huot, S., Analyticity in Spin in Conformal Theories, JHEP, 09, 078 (2017) · Zbl 1382.81173 · doi:10.1007/JHEP09(2017)078
[72] Simmons-Duffin, D.; Stanford, D.; Witten, E., A spacetime derivation of the Lorentzian OPE inversion formula, JHEP, 07, 085 (2018) · Zbl 1395.81246 · doi:10.1007/JHEP07(2018)085
[73] Liu, J.; Perlmutter, E.; Rosenhaus, V.; Simmons-Duffin, D., d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP, 03, 052 (2019) · Zbl 1414.81211 · doi:10.1007/JHEP03(2019)052
[74] G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
[75] Costa, MS; Goncalves, V.; Penedones, J., Conformal Regge theory, JHEP, 12, 091 (2012) · Zbl 1397.81297 · doi:10.1007/JHEP12(2012)091
[76] Murugan, J.; Stanford, D.; Witten, E., More on Supersymmetric and 2d Analogs of the SYK Model, JHEP, 08, 146 (2017) · Zbl 1381.81121 · doi:10.1007/JHEP08(2017)146
[77] A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE]. · Zbl 1434.81101
[78] Hogervorst, M.; van Rees, BC, Crossing symmetry in alpha space, JHEP, 11, 193 (2017) · Zbl 1383.81231 · doi:10.1007/JHEP11(2017)193
[79] Sleight, C.; Taronna, M., Anomalous Dimensions from Crossing Kernels, JHEP, 11, 089 (2018) · Zbl 1404.81242 · doi:10.1007/JHEP11(2018)089
[80] Sleight, C.; Taronna, M., Spinning Mellin Bootstrap: Conformal Partial Waves, Crossing Kernels and Applications, Fortsch. Phys., 66, 1800038 (2018) · Zbl 1535.81220 · doi:10.1002/prop.201800038
[81] de Mello Koch, R.; Jevicki, A.; Suzuki, K.; Yoon, J., AdS Maps and Diagrams of Bi-local Holography, JHEP, 03, 133 (2019) · Zbl 1414.81201 · doi:10.1007/JHEP03(2019)133
[82] Aharony, O.; Chester, SM; Urbach, EY, A Derivation of AdS/CFT for Vector Models, JHEP, 03, 208 (2021) · Zbl 1461.81065 · doi:10.1007/JHEP03(2021)208
[83] Benedetti, D., Instability of complex CFTs with operators in the principal series, JHEP, 05, 004 (2021) · Zbl 1466.81088 · doi:10.1007/JHEP05(2021)004
[84] F. A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[85] Hepp, K., Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. Math. Phys., 2, 301 (1966) · Zbl 1222.81219 · doi:10.1007/BF01773358
[86] W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space, in Lecture Notes in Physics558, Springer (2000), pp. 217-243 [Commun. Math. Phys.15 (1969) 208] [INSPIRE]. · Zbl 0192.61203
[87] V. Rivasseau, From perturbative to constructive renormalization, Princeton University Press, Princeton NJ U.S.A. (2014).
[88] Bergere, MC; Zuber, JB, Renormalization of Feynman amplitudes and parametric integral representation, Commun. Math. Phys., 35, 113 (1974) · doi:10.1007/BF01646611
[89] Bergere, MC; David, F., Integral Representation for the Dimensionally Renormalized Feynman Amplitude, Commun. Math. Phys., 81, 1 (1981) · doi:10.1007/BF01941797
[90] Costa, MS; Hansen, T.; Penedones, J.; Trevisani, E., Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP, 07, 018 (2016) · Zbl 1388.81798 · doi:10.1007/JHEP07(2016)018
[91] Benedetti, D.; Gurau, R.; Harribey, S.; Suzuki, K., Long-range multi-scalar models at three loops, J. Phys. A, 53 (2020) · Zbl 1519.81218 · doi:10.1088/1751-8121/abb6ae
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.