×

\(O(N)\) random tensor models. (English) Zbl 1362.83010

Summary: We define in this paper a class of three-index tensor models, endowed with \({O(N)^{\otimes 3}}\) invariance (\(N\) being the size of the tensor). This allows to generate, via the usual QFT perturbative expansion, a class of Feynman tensor graphs which is strictly larger than the class of Feynman graphs of both the multi-orientable model (and hence of the colored model) and the \(U(N)\) invariant models. We first exhibit the existence of a large \(N\) expansion for such a model with general interactions. We then focus on the quartic model and we identify the leading and next-to-leading order (NLO) graphs of the large \(N\) expansion. Finally, we prove the existence of a critical regime and we compute the critical exponents, both at leading order and at NLO. This is achieved through the use of various analytic combinatorics techniques.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81T18 Feynman diagrams
05C30 Enumeration in graph theory

References:

[1] Gurau R.: Colored group field theory. Commun. Math. Phys. 304, 69-93 (2011) arXiv:0907.2582 · Zbl 1214.81170 · doi:10.1007/s00220-011-1226-9
[2] Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8:020 (2012). arXiv:1109.4812 · Zbl 1242.05094
[3] Gurau R.: The 1/N expansion of colored tensor models. Annales Henri Poincare 12, 829-847 (2011) arXiv:1011.2726 · Zbl 1218.81088 · doi:10.1007/s00023-011-0101-8
[4] Gurau, R.; Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). arXiv:1101.4182 · Zbl 1218.81088
[5] Gurau R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincare 13, 399-423 (2012) arXiv:1102.5759 · Zbl 1245.81118 · doi:10.1007/s00023-011-0118-z
[6] Bonzom V., Gurau R., Riello A., Rivasseau V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174-195 (2011) arXiv:1105.3122 · Zbl 1229.81222 · doi:10.1016/j.nuclphysb.2011.07.022
[7] Gurau R., Ryan J.P.: Melons are branched polymers. Ann. Henri Poincare 15(11), 2085-2131 (2014) arXiv:1302.4386 · Zbl 1303.83012 · doi:10.1007/s00023-013-0291-3
[8] Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum Geometry: A Statistical Field Theory Approach. Cambridge University Press, Cambridge (1997) · Zbl 0993.82500
[9] Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85, 084037 (2012). arXiv:1202.3637 · Zbl 1229.81222
[10] Kamiski, W., Oriti, D., Ryan, J.P.: Towards a double-scaling limit for tensor models: probing sub-dominant orders. N. J. Phys. 16, 063048 (2014). arXiv:1304.6934 · Zbl 1451.81276
[11] Dartois, S., Gurau, R., Rivasseau, V.: Double scaling in tensor models with a quartic interaction. JHEP 09, 088 (2013). arXiv:1307.5281 · Zbl 1342.83079
[12] Bonzom V., Gurau R., Ryan J.P., Tanasa A.: The double scaling limit of random tensor models. JHEP 09, 051 (2014) arXiv:1404.7517 · Zbl 1333.60014 · doi:10.1007/JHEP09(2014)051
[13] Gurau R.: Universality for random tensors. Ann. Inst. H. Poincare Probab. Stat. 50(4), 1474-1525 (2014) arXiv:1111.0519 · Zbl 1318.60010 · doi:10.1214/13-AIHP567
[14] Gurau R.: The 1/N expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330, 973-1019 (2014) arXiv:1304.2666 · Zbl 1297.81126 · doi:10.1007/s00220-014-1907-2
[15] Delepouve, T., Gurau, R., Rivasseau, V.: Universality and Borel summability of arbitrary quartic tensor models (2014). arXiv:1403.0170. · Zbl 1341.81045
[16] Tanasa A.: Multi-orientable group field theory. J. Phys. A 45, 165401 (2012) arXiv:1109.0694 · Zbl 1246.81172 · doi:10.1088/1751-8113/45/16/165401
[17] Tanasa A.: Tensor models, a quantum field theoretical particularization. Proc. Rom. Acad. A 13(3), 225 (2012) arXiv:1211.4444
[18] Dartois S., Rivasseau V., Tanasa A.: The 1/N expansion of multi-orientable random tensor models. Ann. Henri Poincare 15, 965-984 (2014) arXiv:1301.1535 · Zbl 1288.81070 · doi:10.1007/s00023-013-0262-8
[19] Raasakka M., Tanasa A.: Next-to-leading order in the large N expansion of the multi-orientable random tensor model. Ann. Henri Poincare 16(5), 1267-1281 (2015) arXiv:1310.3132 · Zbl 1314.83022 · doi:10.1007/s00023-014-0336-2
[20] Fusy, E., Tanasa, A.: Asymptotic expansion of the multi-orientable random tensor model (2014). arXiv:1408.5725 · Zbl 1310.81117
[21] Gurau R., Tanasa A., Youmans D.R.: The double scaling limit of the multi-orientable tensor model. Europhys. Lett. 111(2), 21002 (2015) arXiv:1505.00586 · doi:10.1209/0295-5075/111/21002
[22] Tanasa, A.: The multi-orientable random tensor model, a review (2015). arXiv:1512.02087 · Zbl 1310.81117
[23] Ben Geloun J., Rivasseau V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69-109 (2013) arXiv:1111.4997 · Zbl 1261.83016 · doi:10.1007/s00220-012-1549-1
[24] Ben Geloun J., Samary D.O.: 3D tensor field theory: renormalization and one-loop \[{\beta}\] β-functions. Ann. Henri Poincare 14, 1599-1642 (2013) arXiv:1201.0176 · Zbl 1272.83028 · doi:10.1007/s00023-012-0225-5
[25] Carrozza S., Oriti D., Rivasseau V.: Renormalization of tensorial group field theories: abelian U(1) models in four dimensions. Commun. Math. Phys. 327, 603-641 (2014) arXiv:1207.6734 · Zbl 1291.83102 · doi:10.1007/s00220-014-1954-8
[26] Samary D.O., Vignes-Tourneret F.: Just renormalizable TGFT’s on U(1)d with gauge invariance. Commun. Math. Phys. 329, 545-578 (2014) arXiv:1211.2618 · Zbl 1294.83031 · doi:10.1007/s00220-014-1930-3
[27] Carrozza S., Oriti D., Rivasseau V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581-637 (2014) arXiv:1303.6772 · Zbl 1300.83023 · doi:10.1007/s00220-014-1928-x
[28] Lahoche, V., Oriti, D.: Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1) (2015). arXiv:1506.08393 · Zbl 1357.81145
[29] Carrozza S.: Discrete renormalization group for SU(2) tensorial group field theory. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 03, 49-112 (2015) arXiv:1407.4615 · Zbl 1319.81068 · doi:10.4171/AIHPD/15
[30] Carrozza S.: Group field theory in dimension \[{4-\epsilon}4\]-ϵ. Phys. Rev. D 91(6), 065023 (2015) arXiv:1411.5385 · doi:10.1103/PhysRevD.91.065023
[31] Carrozza, S.: Tensorial Methods and Renormalization in Group Field Theories. Springer, Berlin (2014). arXiv:1310.3736 · Zbl 1338.81004
[32] Zinn-Justin P.: The general O(n) quartic matrix model and its application to counting tangles and links. Commun. Math. Phys. 238, 287-304 (2003) arXiv:math-ph/0106005 · Zbl 1033.57004 · doi:10.1007/s00220-003-0846-0
[33] Alexandrov S., Geiller M., Noui K.: Spin foams and canonical quantization. SIGMA 8, 055 (2012) arXiv:1112.1961 · Zbl 1270.83018
[34] Perez, A.: The spin foam approach to quantum gravity. Liv. Rev. Rel. 16, 3 (2013). arXiv:1205.2019 · Zbl 1320.83008
[35] Freidel L.: Group field theory: an Overview. Int. J. Theor. Phys. 44, 1769-1783 (2005) arXiv:hep-th/0505016 · Zbl 1100.83010 · doi:10.1007/s10773-005-8894-1
[36] Oriti, D.: The microscopic dynamics of quantum space as a group field theory, pp 257-320 (2011). arXiv:1110.5606 · Zbl 1269.83008
[37] Vince A.: The classification of closed surfaces using colored graphs. Graphs Combin. 9(1), 75-84 (1993) · Zbl 0853.57001 · doi:10.1007/BF01195329
[38] Freidel L., Louapre D.: Nonperturbative summation over 3-D discrete topologies. Phys. Rev. D 68, 104004 (2003) arXiv:hep-th/0211026 · doi:10.1103/PhysRevD.68.104004
[39] Magnen J., Noui K., Rivasseau V., Smerlak M.: Scaling behaviour of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009) arXiv:0906.5477 · Zbl 1176.83066 · doi:10.1088/0264-9381/26/18/185012
[40] Ryan J.P.: Tensor models and embedded Riemann surfaces. Phys. Rev. D 85, 024010 (2012) arXiv:1104.5471 · doi:10.1103/PhysRevD.85.024010
[41] Freidel L., Louapre D.: Nonperturbative summation over 3-D discrete topologies. Phys. Rev. D 68, 104004 (2003) arXiv:hep-th/0211026 · doi:10.1103/PhysRevD.68.104004
[42] Abdesselam A.: The Jacobian conjecture as a problem of perturbative quantum field theory. Ann. Henri Poincare 4, 199-215 (2003) arXiv:math/0208173 · Zbl 1081.14530
[43] de Goursac, A., Sportiello, A., Tanasa, A.: The Jacobian conjecture, a reduction of the degree to the quadratic case (2014). arXiv:1411.6558 · Zbl 1355.14037
[44] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) · Zbl 1165.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.