×

Minimally packed phases in holography. (English) Zbl 1388.83048

Summary: We numerically construct asymptotically AdS black brane solutions of \(D=4\) Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to \(d=3\) CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

MSC:

83C22 Einstein-Maxwell equations
83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
83E30 String and superstring theories in gravitational theory

Software:

PETSc

References:

[1] M. Vojta, Lattice symmetry breaking in cuprate superconductors: Stripes, nematics and superconductivity, Adv. Phys.58 (2009) 699 [arXiv:0901.3145]. · doi:10.1080/00018730903122242
[2] S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett.99 (2007) 141602 [arXiv:0704.1604] [INSPIRE]. · doi:10.1103/PhysRevLett.99.141602
[3] S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
[4] T. Wiseman, Static axisymmetric vacuum solutions and nonuniform black strings, Class. Quant. Grav.20 (2003) 1137 [hep-th/0209051] [INSPIRE]. · Zbl 1051.83018 · doi:10.1088/0264-9381/20/6/308
[5] A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett.108 (2012) 211601 [arXiv:1203.0533] [INSPIRE]. · doi:10.1103/PhysRevLett.108.211601
[6] J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP02 (2010) 060 [arXiv:0912.0512] [INSPIRE]. · Zbl 1270.81171 · doi:10.1007/JHEP02(2010)060
[7] A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE]. · Zbl 1298.81271 · doi:10.1007/JHEP08(2011)140
[8] M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic Stripes, Phys. Rev. Lett.110 (2013) 201603 [arXiv:1211.5600] [INSPIRE]. · doi:10.1103/PhysRevLett.110.201603
[9] A. Donos, Striped phases from holography, JHEP05 (2013) 059 [arXiv:1303.7211] [INSPIRE]. · doi:10.1007/JHEP05(2013)059
[10] B. Withers, Black branes dual to striped phases, Class. Quant. Grav.30 (2013) 155025 [arXiv:1304.0129] [INSPIRE]. · Zbl 1273.83114 · doi:10.1088/0264-9381/30/15/155025
[11] B. Withers, The moduli space of striped black branes, arXiv:1304.2011 [INSPIRE]. · Zbl 1273.83114
[12] M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Striped order in AdS/CFT correspondence, Phys. Rev.D 87 (2013) 126007 [arXiv:1304.3130] [INSPIRE].
[13] B. Withers, Holographic Checkerboards, JHEP09 (2014) 102 [arXiv:1407.1085] [INSPIRE]. · Zbl 1333.83115 · doi:10.1007/JHEP09(2014)102
[14] S. Bolognesi and D. Tong, Monopoles and Holography, JHEP01 (2011) 153 [arXiv:1010.4178] [INSPIRE]. · Zbl 1214.81191 · doi:10.1007/JHEP01(2011)153
[15] M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Black Hole Instability Induced by a Magnetic Field, Phys. Lett.B 706 (2011) 94 [arXiv:1106.4551] [INSPIRE]. · doi:10.1016/j.physletb.2011.10.067
[16] A. Almuhairi and J. Polchinski, Magnetic AdS × R2: Supersymmetry and stability, arXiv:1108.1213 [INSPIRE].
[17] A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP01 (2012) 061 [arXiv:1109.0471] [INSPIRE]. · Zbl 1306.81218 · doi:10.1007/JHEP01(2012)061
[18] Y.-Y. Bu, J. Erdmenger, J.P. Shock and M. Strydom, Magnetic field induced lattice ground states from holography, JHEP03 (2013) 165 [arXiv:1210.6669] [INSPIRE]. · doi:10.1007/JHEP03(2013)165
[19] S. Cremonini and A. Sinkovics, Spatially Modulated Instabilities of Geometries with Hyperscaling Violation, JHEP01 (2014) 099 [arXiv:1212.4172] [INSPIRE]. · doi:10.1007/JHEP01(2014)099
[20] N. Bao, S. Harrison, S. Kachru and S. Sachdev, Vortex Lattices and Crystalline Geometries, Phys. Rev.D 88 (2013) 026002 [arXiv:1303.4390] [INSPIRE].
[21] N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP12 (2014) 083 [arXiv:1408.1397] [INSPIRE]. · doi:10.1007/JHEP12(2014)083
[22] A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP03 (2013) 108 [arXiv:1212.0871] [INSPIRE]. · Zbl 1342.83068 · doi:10.1007/JHEP03(2013)108
[23] A. Donos and J.P. Gauntlett, On the thermodynamics of periodic AdS black branes, JHEP10 (2013) 038 [arXiv:1306.4937] [INSPIRE]. · Zbl 1342.83360 · doi:10.1007/JHEP10(2013)038
[24] M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav.27 (2010) 035002 [arXiv:0905.1822] [INSPIRE]. · Zbl 1186.83083 · doi:10.1088/0264-9381/27/3/035002
[25] P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav.28 (2011) 215018 [arXiv:1104.4489] [INSPIRE]. · Zbl 1230.83015 · doi:10.1088/0264-9381/28/21/215018
[26] A. Adam, S. Kitchen and T. Wiseman, A numerical approach to finding general stationary vacuum black holes, Class. Quant. Grav.29 (2012) 165002 [arXiv:1105.6347] [INSPIRE]. · Zbl 1252.83049 · doi:10.1088/0264-9381/29/16/165002
[27] T. Wiseman, Numerical construction of static and stationary black holes, arXiv:1107.5513 [INSPIRE]. · Zbl 1266.83005
[28] A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC Conductivity of Magnetised Holographic Matter, JHEP01 (2016) 113 [arXiv:1511.00713] [INSPIRE]. · Zbl 1388.83345 · doi:10.1007/JHEP01(2016)113
[29] A. Donos, J.P. Gauntlett and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav.31 (2014) 055007 [arXiv:1310.5741] [INSPIRE]. · Zbl 1292.83016 · doi:10.1088/0264-9381/31/5/055007
[30] E. Banks and J.P. Gauntlett, A new phase for the anisotropic N = 4 super Yang-Mills plasma, JHEP09 (2015) 126 [arXiv:1506.07176] [INSPIRE]. · Zbl 1388.83380 · doi:10.1007/JHEP09(2015)126
[31] A. Donos and J.P. Gauntlett, Navier-Stokes Equations on Black Hole Horizons and DC Thermoelectric Conductivity, Phys. Rev.D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].
[32] E. Banks, A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows on black hole horizons, JHEP10 (2015) 103 [arXiv:1507.00234] [INSPIRE]. · Zbl 1388.83379 · doi:10.1007/JHEP10(2015)103
[33] A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP01 (2015) 035 [arXiv:1409.6875] [INSPIRE]. · doi:10.1007/JHEP01(2015)035
[34] S. Balay et al., PETSc Web page, http://www.mcs.anl.gov/petsc (2015).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.