×

Discrete effects on the source term for the lattice Boltzmann modelling of one-dimensional reaction-diffusion equations. (English) Zbl 1521.76699

Summary: This work presents a detailed numerical analysis of one-dimensional, time-dependent (linear) reaction-diffusion type equations modelled with the lattice Boltzmann method (LBM), using the two-relaxation-time (TRT) scheme, for the D1Q3 lattice. The interest behind this study is twofold. First, because it applies to the description of many engineering problems, such as the mass transport in membranes, the heat conduction in fins, or the population growth in biological systems. Second, because this study also permits understanding the general effect of solution-dependent sources in LBM, where this problem offers a simple, yet non-trivial, canonical groundwork. Without recurring to perturbative techniques, such as the Chapman-Enskog expansion, we exactly derive the macroscopic numerical scheme that is solved by the LBM-TRT model with a solution-dependent source and show that it obeys a four-level explicit finite difference structure. In the steady-state limit, this scheme reduces to a second-order finite difference approximation of the stationary reaction-diffusion equation that, due to artefacts from the source term discretization, may operate with an effective diffusion coefficient of negative value, although still remaining stable. Such a surprising result is demonstrated through an exact stability analysis that proves the unconditional stability of the LBM-TRT model with a solution-dependent source, in line with the already proven source-less pure diffusion case [Y. Lin et al., “Multiple-relaxation-time lattice Boltzmann model-based four-level finite-difference scheme for one-dimensional diffusion equations”, Phys. Rev. E (3) 104, No. 1, Article ID 015312, 14 p. (2021; doi:10.1103/PhysRevE.104.015312)]. This proof enlarges the confidence over the LBM-TRT model robustness also for the (linear) reaction-diffusion problem class. Finally, a truncation error analysis is performed to disclose the structure of the leading order errors. From this knowledge, two strategies are proposed to improve the scheme accuracy from second- to fourth-order. One exclusively based on the tuning of the LBM-TRT scheme free-parameters, namely the two relaxation rates and the lattice weight coefficient, and the other based on the redefinition of the structure of the relaxation rates, where the leading order truncation error is absorbed into one of the relaxation rates, liberating the other to improve additional features of the scheme. Numerical tests presented in the last part of the work support the ensemble of theoretical findings.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Farlow, S. J., Partial differential equations for scientists and engineers (2012), Courier Corporation
[2] Crank, J., The mathematics of diffusion (1980), Oxford University Press · Zbl 0071.41401
[3] Carslaw, H. S.; Jaeger, J. C., Conduction of heat in solids (1986), Oxford University Press · Zbl 0584.73001
[4] Mavroudi, M.; Kaldis, S. P.; Sakellaropoulos, G. P., A study of mass transfer resistance in membrane gas-liquid contacting processes, J Membr Sci, 272, 103-115 (2006)
[5] Nagy, E.; Lepossa, A.; Prettl, Z., Mass transfer through a biocatalytic membrane reactor, Ind Eng Chem Res, 51, 4, 1635-1646 (2012)
[6] Suryanarayana, N. V., Transient response of straight fins: Part II, J Heat Transfer, 98, 2, 324-326 (1976)
[7] Estrada-Gasca, C. A.; Cooble, M. H.; Garcia, G. A., One-dimensional non-linear transient heat conduction in nuclear waste repositories, Eng Comput, 8, 4, 345-360 (1991)
[8] Chu, M.; Kitanidis, P.; McCarty, P., Dependence of lumped mass transfer coefficient on scale and reactions kinetics for biologically enhanced NAPL dissolution, Adv Water Resour, 30, 6, 1618-1629 (2007)
[9] Fletcher, C., Computational techniques for fluid dynamics, Vol. 1 (1998), Springer-Verlag Berlin Heidelberg
[10] Yu, Z.; Wei, Z.; Chenhui, Z.; Yulan, W., Numerical solution of a coupled reaction-diffusion model using barycentric interpolation collocation method, Therm Sci, 24, 4, 2561-2567 (2020)
[11] Andersen, P.; Evje, S., A model for reactive flow in fractured porous media, Chem Eng Sci, 145, 196-213 (2016)
[12] Carvalho, A. N.; Cuminato, J. A., Reaction-diffusion problems in cell tissues, J Dynam Differential Equations, 9, 1, 93-131 (1997) · Zbl 0879.35075
[13] Iida, M.; Ninomiya, H.; Yamamoto, H., A review on reaction-diffusion approximation, J Elliptic Parabol Equ, 4, 565-600 (2018) · Zbl 1404.35253
[14] Chen, S.; Doolen, G., Lattice Boltzmann method for fluid flows, Ann Rev Fluid Mech, 30, 329-364 (1998) · Zbl 1398.76180
[15] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Ann Rev Fluid Mech, 42, 439-472 (2010) · Zbl 1345.76087
[16] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. M., The lattice Boltzmann method - principles and practice (2016), Springer International Publishing
[17] Succi, S., The lattice Boltzmann equation: for complex states of flowing matter (2018), Oxford University Press · Zbl 1485.76003
[18] Marie, S.; Ricot, D.; Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high-order schemes for computational aeroacoustics, J Comput Phys, 228, 4, 1056-1070 (2009) · Zbl 1330.76115
[19] Peng, Y.; Liao, W.; Luo, L.-S.; Wang, L.-P., Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: Low-order statistics, Comput & Fluids, 39, 4, 568-591 (2010) · Zbl 1242.76277
[20] Silva, G.; Talon, L.; Ginzburg, I., Low-and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes, J Comput Phys, 335, 50-83 (2017) · Zbl 1375.76190
[21] Silva, G., Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries, Phys Rev E, 98, Article 023302 pp. (2018)
[22] He, X.; Zou, Q.; Luo, L.-S.; Dembo, M., Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation, J Stat Phys, 88, 927-944 (1997) · Zbl 0939.82042
[23] Lallem, P.; Luo, L.-S.; Krafczyk, M.; Yong, W.-A., The lattice Boltzmann method for nearly incompressible flows, J Comput Phys, 431, Article 109713 pp. (2021) · Zbl 07511443
[24] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv Water Resour, 28, 1171-1195 (2005)
[25] Chopard, B.; Falcone, J. L.; Latt, J., The lattice Boltzmann advection-diffusion model revisited, Eur Phys J Spec Top, 171, 245-249 (2009)
[26] Shi, B.; Guo, Z., Lattice Boltzmann model for nonlinear convection-diffusion equations, Phys Rev E, 79, Article 016701 pp. (2009)
[27] Chai, Z.; He, N.; Guo, Z.; Shi, B., Lattice Boltzmann model for high-order nonlinear partial differential equations, Phys Rev E, 97, Article 013304 pp. (2018)
[28] Chai, Z. H.; Shi, B. C., A novel lattice Boltzmann model for the Poisson equation, Appl Math Model, 32, 2050-2058 (2008) · Zbl 1145.82344
[29] Zhang, J.; Yan, G., A lattice Boltzmann model for the Burgers-Fisher equation, Chaos, 20, Article 023129 pp. (2010) · Zbl 1311.35268
[30] Zhang, J.; Yan, G., Lattice Boltzmann model for the complex Ginzburg-Landau equation, Phys Rev E, 81, Article 066705 pp. (2010)
[31] Zhong, L. H.; Feng, S. D.; Dong, P.; Gao, S. T., Lattice Boltzmann schemes for the nonlinear Schrödinger equation, Phys Rev E, 74, Article 036704 pp. (2006)
[32] Shi, B., Lattice Boltzmann simulation of nonlinear Schrödinger equation with variable coefficients, J Phys A, 40, 33, 10393 (2010)
[33] Shi, B. C.; Guo, Z. L., Lattice Boltzmann model for the one-dimensional nonlinear Dirac equation, Phys Rev E, 79, Article 066704 pp. (2009)
[34] Palpacelli, S.; Romatschke, P.; Succi, S., One-dimensional quantum lattice Boltzmann scheme for the nonlinear Dirac equation, Int J Mod Phys C, 24, 12, Article 134000 pp. (2013)
[35] Ginzbourg, I.; Adler, P. M., Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J Phys II, 4, 191 (1994)
[36] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J Fluid Mech, 271, 285 (1994) · Zbl 0815.76085
[37] Buick, J. M.; Greated, C. A., Gravity in a lattice Boltzmann model, Phys Rev E, 61, 5307 (2000)
[38] Guo, Z.; Zheng, C.; Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys Rev E, 65, Article 046308 pp. (2002) · Zbl 1244.76102
[39] Ginzburg, I.; Verhaeghe, F.; d’Humières, D., Two-relaxation-time lattice Boltzman scheme: about parametrization, velocity, pressure and mixed conditions, Commun Comp Phys, 3, 427 (2008)
[40] Silva, G.; Semiao, V., A study on the inclusion of body forces in the lattice Boltzmann BGK equation to recover steady-state hydrodynamics, Physica A, 390, 1085-1095 (2011)
[41] Silva, G.; Semiao, V., First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form, J Fluid Mech, 698, 282-303 (2012) · Zbl 1250.76143
[42] Silva, G., Discrete effects on the forcing term for the lattice Boltzmann modeling of steady hydrodynamics, Comput & Fluids, 203, Article 104537 pp. (2020) · Zbl 1519.76259
[43] Postma, B.; Silva, G., Force methods for the two-relaxation-times lattice Boltzmann, Phys Rev E, 102, Article 063307 pp. (2020)
[44] Yong, W.-A.; Zhao, W.; Luo, L.-S., Theory of the lattice Boltzmann method: derivation of macroscopic equations via the Maxwell iteration, Phys Rev E, 93, 3, Article 033310 pp. (2016)
[45] Suzuki, K.; Inamuro, T.; Yoshino, M., Asymptotic equivalence of forcing terms in the lattice Boltzmann method within second-order accuracy, Phys Rev E, 102, Article 013308 pp. (2020)
[46] Latt, J., Hydrodynamic limit of lattice Boltzmann equations (2007), University of Geneva, http://www.unige.ch/cyberdocuments/theses2007/LattJ/meta.html
[47] Ginzburg, I., Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection-diffusion equation, Commun Comput Phys, 11, 1439-1502 (2012) · Zbl 1373.76241
[48] Ginzburg, I., Truncation effect on taylor-aris dispersion in lattice Boltzmann schemes: Accuracy towards stability, J Comput Phys, 299, 974-1003 (2015) · Zbl 1351.76235
[49] Qian, Y.-H.; Zhou, Y., Higher-order dynamics in lattice-based models using the chapman-enskog method, Phys Rev E, 61, 2, 2103 (2000)
[50] Silva, G.; Semiao, V., Truncation errors and the rotational invariance of three-dimensional lattice models in the lattice Boltzmann method, J Comput Phys, 269, 259-279 (2014) · Zbl 1349.76734
[51] Bauer, M.; Silva, G.; Rüde, U., Truncation errors of the D3Q19 lattice model for the lattice Boltzmann method, J Comput Phys, 405, Article 109111 pp. (2020) · Zbl 1453.76157
[52] Nie, X.; Martys, N. S., Breakdown of Chapman-Enskog expansion and the anisotropic effect for lattice-Boltzmann models of porous flow, Phys Fluids, 19, Article 011702 pp. (2007) · Zbl 1146.76494
[53] Ginzburg, I., Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion, Phys Rev E, 77, Article 066704 pp. (2008)
[54] d’Humières, D.; Ginzburg, I., Viscosity independent numerical errors for lattice Boltzmann models: From recurrence equations to magic collision numbers, Comput Math Appl, 58, 823 (2009) · Zbl 1189.76405
[55] Guo, Z.; Zheng, C.; Shi, B., Force imbalance in lattice Boltzmann equation for two-phase flows, Phys Rev E, 83, Article 036707 pp. (2011)
[56] Ancona, M. G., Fully Lagrangian and lattice-Boltzmann methods for solving systems of conservation equations, J Comput Phys, 155, 107-120 (1994) · Zbl 0808.65087
[57] He, X.; Zou, Q.; Luo, L.-S.; Dembo, M., Analytical solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J Stat Phys, 87, 115-136 (1997) · Zbl 0937.82043
[58] Guo, Z.; Zheng, C., Analysis of lattice Boltzmann equation for microscale gas flows: Relaxation time, boundary condition, and Knudsen layer, Int J Comput Fluid Dyn, 22, 465 (2008) · Zbl 1184.76793
[59] Le, G.; Zhang, J., Boundary slip from the immersed boundary lattice Boltzmann models, Phys Rev E, 79, Article 026701 pp. (2009)
[60] Chang, H.-W.; Garg, A.; Lin, C.-A., Analytic solutions of the variable force effect in lattice Boltzmann methods for Poiseuille flows, Phys Fluids, 33, Article 083610 pp. (2021)
[61] Dubois, F.; Lallem, P., Towards higher order lattice Boltzmann schemes, J Stat Mech Theory Exp, 2009, P06006 (2009) · Zbl 1459.76097
[62] Holdych, D. J.; Noble, R. N.; Georgiadis, J. G.; Buckius, R. O., Truncation error analysis of lattice Boltzmann methods, J Comput Phys, 193, 595-619 (2004) · Zbl 1040.76052
[63] Zhao, F., Optimal relaxation collisions for lattice Boltzmann methods, Comput Math Appl, 65, 2, 172-185 (2013) · Zbl 1268.76052
[64] Lycett-Brown, D.; Luo, K. H., Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios, Phys Rev E, 91, Article 023305 pp. (2015)
[65] Ginzburg, I.; Silva, G.; Talon, L., Analysis and improvement of brinkman lattice Boltzmann schemes: bulk, boundary, interface. similarity and distinctness with finite elements in heterogeneous porous media, Phys Rev E, 91, Article 023307 pp. (2015)
[66] Yamamoto, K.; He, X.; Doolen, G. D., Simulation of combustion field with lattice Boltzmann method, J Stat Phys, 107, 1-2, 367-383 (2002) · Zbl 1007.82010
[67] Chen, S.; Liu, Z.; Zhang, C.; He, Z.; Tian, Z.; Shi, B.; Zheng, C., A novel coupled lattice Boltzmann model for low mach number combustion simulation, Appl Math Comput, 193, 1, 266-284 (2007) · Zbl 1193.80026
[68] Ayodele, S.; Varnik, F.; Raabe, D., Lattice Boltzmann study of pattern formation in reaction-diffusion systems, Phys Rev E, 83, 1, Article 016702 pp. (2011)
[69] Lin, C.; Xu, A.; Zhang, G.; Li, Y., Double-distribution-function discrete Boltzmann model for combustion, Combust Flame, 164, 137-151 (2016)
[70] Hosseini, S. A.; Darabiha, N.; Thévenin, D., Mass-conserving advection-diffusion lattice Boltzmann model for multi-species reacting flows, Physica A, 499, 3, 40-57 (2018) · Zbl 1514.76115
[71] Sahu, A.; Bhowmick, S., Transient response of longitudinal fins under step changes in base temperature and heat flux using lattice Boltzmann method, J Appl Comput Mech, 8, 3, 925-939 (2022)
[72] Kuzmin, A.; Ginzburg, I.; Mohamad, A. A., The role of the kinetic parameter in the stability of two-relaxation-time advection-diffusion lattice Boltzmann schemes, Comput Math Appl, 61, 3417-3442 (2011) · Zbl 1225.76233
[73] Suga, S., An accurate multi-level finite difference scheme for 1D diffusion equations derived from the lattice Boltzmann method, J Stat Phys, 140, 494-503 (2010) · Zbl 1197.82027
[74] Straka, R.; Sharma, K. V., An accuracy analysis of the cascaded lattice Boltzmann method for the 1D advection-diffusion equation, Comput Methods Mater Sci, 20, 4, 173-184 (2020)
[75] Lin, Y.; Hong, N.; Shi, B.; Chai, Z., Multiple-relaxation-time lattice Boltzmann model-based four-level finite-difference scheme for one-dimensional diffusion equations, Phys Rev E, 104, Article 015312 pp. (2021)
[76] Silva, G.; Ginzburg, I., The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT-LBM and FEM Brinkman schemes, C R Méc, 343, 545-558 (2015)
[77] Ginzburg, I.; d’Humières, D., Local second-order boundary method for lattice Botlzmann models, J Stat Phys, 64, 927-971 (1996) · Zbl 1081.82617
[78] Silva, G.; Ginzburg, I., Reviving the local second-order boundary approach within the two-relaxation-time lattice Boltzmann modelling, Phil Trans R Soc A, 378, Article 20190404 pp. (2020) · Zbl 1470.76079
[79] Ginzburg, I.; Silva, G., Mass-balance and locality versus accuracy with the new boundary and interface- conjugate approaches in advection-diffusion lattice Boltzmann method, Phys Fluids, 33, 5, 57104 (2021)
[80] Thomas, J. W., Numerical partial differential equations. Finite difference methods (1995), Springer · Zbl 0831.65087
[81] Ganzha, V. G.; Vorozhtsov, E. V., Numerical solutions for partial differential equations: problem solving using mathematica (1996), CRC Press · Zbl 0861.65069
[82] Gustaffson, B.; Kreiss, H.-O.; Sundstrøm, A., Stability theory of difference approxima- tions for initial boundary value problems: II, Math Comp, 26, 649-686 (1972) · Zbl 0293.65076
[83] Mikheev, A.; Krivovichev, G. V., Stability analysis of the lattice Boltzmann schemes with body force action, J Phys: Conf Ser, 1038, Article 012040 pp. (2018)
[84] Krivovichev, G. V., Stability analysis of body force action models used in the single-relaxation-time single-phase lattice Boltzmann method, Appl Math Comput, 348, 25-41 (2019) · Zbl 1428.76156
[85] De Rosis, A., Modeling epidemics by the lattice Boltzmann method, Phys Rev E, 102, Article 023301 pp. (2020)
[86] Gantmacher, F. R., Applications of the theory of matrices (1959), Interscience Publishers: Interscience Publishers New York · Zbl 0085.01001
[87] Miller, J. H., On the location of zeros of certain classes of polynomials with applications to numerical analysis, J Inst Math Appl, 8, 397 (1971) · Zbl 0232.65070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.