×

Reaction-diffusion problems in cell tissues. (English) Zbl 0879.35075

Summary: We consider reaction diffusion problems describing a reaction occurring in a planar domain (regarded as cell tissue). The diffusivity is assumed to be large except in the neighborhood of curves (regarded as membranes), around which it is assumed to be small. The subregions determined by the membranes and by the boundary of the domain (tissue wall) are regarded as cells. We assume that the tissue wall is a barrier through which no substance can pass. We prove that the dynamics is described by a system of ordinary differential equations that can be explicitly exhibited through the parameters defining the reaction diffusion problem, the length of the membranes, and the area of the cells. The tools employed are a detailed analysis of an eigenvalue problem and the invariant manifold theory.

MSC:

35K57 Reaction-diffusion equations
35P15 Estimates of eigenvalues in context of PDEs
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
34D45 Attractors of solutions to ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations

Software:

PLTMG
Full Text: DOI

References:

[1] Bank, R. E. (1990).PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User’s Guide 6, SI AM, Philadelphia. · Zbl 0717.68001
[2] Bank, R. E., and Weiser, A. (1985). Some a posteriori error estimators for elliptic partial differential equations.Math. Comp. 44, 283–301. · Zbl 0569.65079 · doi:10.1090/S0025-5718-1985-0777265-X
[3] Carvalho, A. N., and Hale, J. K. (1991). Large diffusion with dispersion.Nonlin. Anal. TMA 17(12), 1139–1151. · Zbl 0781.35028 · doi:10.1016/0362-546X(91)90233-Q
[4] Carvalho, A. N. (1992). Spatial homogeneity in damped hyperbolic equations.Dynam. Syst. Appl. 1(3), 221–250. · Zbl 0799.35156
[5] Carvalho, A. N. (1995a). Infinite dimensional dynamics describe by ODE.J. Diff. Eg. 116(2), 338–404. · Zbl 0847.34065 · doi:10.1006/jdeq.1995.1039
[6] Carvalho, A. N. (1995b). Contracting sets and dissipation.Proc. Roy. Soc. Edinburgh 125A(6), 1305–1329. · Zbl 0846.35066
[7] Carvalho, A. N., and Pereira, A. L. (1994). A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations.J. Diff. Eq. 112(1), 81–130. · Zbl 0805.35058 · doi:10.1006/jdeq.1994.1096
[8] Carvalho, A. N., and Ruas-Filho, J. G. (1995). Global attractors for parabolic problems in fractional power spaces.SIAM J. Math. Anal. 26(2), 415–427. · Zbl 0824.35009 · doi:10.1137/S0036141093246427
[9] Conway, E., Hoff. D., and Smoller, J. (1978). Large time behavior of solutions of systems of nonlinear reaction-diffusion equations.SIAM J. Appl. Math. 35, 1–16. · Zbl 0383.35035 · doi:10.1137/0135001
[10] Fusco, G. (1987). On the explicit construction of an ODE which has the same dynamics as a scalar parabolic PDE.J. Diff. Eq. 69, 85–110. · Zbl 0634.35037 · doi:10.1016/0022-0396(87)90104-5
[11] Hale, J. K. (1986) Large diffusivity and asymptotic behavior in parabolic systems.J. Math. Anal. Appl. 118(2), 455–466. · Zbl 0602.35059 · doi:10.1016/0022-247X(86)90273-8
[12] Hale, J. K. (1988).Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs25. AMS.
[13] Hale, J. K., and Rocha, C. (1987a). Varying boundary conditions with large diffusivity.J. Mat. Pures Appl. 66, 139–158. · Zbl 0557.35078
[14] Hale, J. K., and Rocha, C. (1987b). Interaction of diffusion and boundary conditions.Nonlin. Anal. TMA 11(5), 633–649. · Zbl 0661.35047 · doi:10.1016/0362-546X(87)90078-2
[15] Hale, J. K., and Sakamoto, K. (1989). Shadow systems and attractors in reaction-diffusion equations.Appl. Anal. 32, 287–303. · Zbl 0667.34072 · doi:10.1080/00036818908839855
[16] Henry, D. (1981).Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics840, Springer-Verlag, New York. · Zbl 0456.35001
[17] Mahaffy, J. M., and Pao, C. V. (1984). Models of genetic control and repression with time delays and spatial effects.J. Math. Biol. 20, 39–57. · Zbl 0577.92010 · doi:10.1007/BF00275860
[18] Mahaffy, J. M., and Pao, C. V. (1985). Qualitative analysis of a coupled reaction-diffusion model in biology with time delays.J. Math. Anal. Appl. 109, 355–371. · Zbl 0583.92012 · doi:10.1016/0022-247X(85)90156-8
[19] Smoller, J. (1983).Shock Waves and Reaction-Diffusion Equations. Grundlehren Math. Wiss.258, Springer-Verlag, New York. · Zbl 0508.35002
[20] Strang, G., and Fix, G. J. (1973).An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, NJ. · Zbl 0356.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.