×

Boundedness and asymptotic behavior of solutions to one-dimensional urban crime system with nonlinear diffusion. (English) Zbl 1521.35045

Summary: This paper deals with a one-dimensional cross-diffusion system \[ \begin{cases} u_t = (D(u)u_x)_x - \chi(\frac{u}{v}v_x)_x - uv + B_1(x, t), & x\in\varOmega, t > 0, \\ v_t = v_{xx} - v + uv + B_2(x, t), & x\in\varOmega, t > 0, \end{cases} \] which is proposed by M. B. Short et al. [Math. Models Methods Appl. Sci. 18, 1249–1267 (2008; Zbl 1180.35530)] to describe the dynamics of urban crime. If \(D(u) \geq D_0(u + 1)^{m - 1}\) with \(D_0, m > 0\), it is proved for arbitrary \(\chi > 0\) that the system possesses a globally bounded classical solution provided \(m > \frac{1}{4}\) with some mild assumptions on nonnegative functions \(B_1\), \(B_2\). In addition, if \(B_2 \equiv 0\), the attractiveness value of \(v\) and its derivative \(v_x\) decay to zero in the long time limit.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

Citations:

Zbl 1180.35530
Full Text: DOI

References:

[1] Short, M. B.; D’Orsogna, M. R.; Pasour, V. B.; Tita, G. E.; Brantingham, P. J.; Bertozzi, A. L.; Chayes, L. B., A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, 1249-1267 (2008) · Zbl 1180.35530
[2] Rodriguez, N.; Winkler, M., On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, European J. Appl. Math., 1-41 (2021)
[3] Tao, Y. S.; Winkler, M., Global smooth solutions in a two-dimensional cross-diffusion system modeling propagation of urban crime, Commun. Math. Sci., 19, 829-849 (2021) · Zbl 1479.35120
[4] Freitag, M., Global solutions to a higher-dimensional system related to crime modeling, Math. Methods Appl. Sci., 41, 6326-6335 (2018) · Zbl 1401.35203
[5] Yang, L.; Yang, X. J., Global existence in a two-dimensional nonlinear diffusion model for urban crime propagation, Nonlinear Anal., 224, Article 113086 pp. (2022) · Zbl 1496.35229
[6] Ahn, J.; Kang, K.; Lee, J., Global well-posedness of logarithmic Keller-Segel type systems, J. Differential Equations, 287, 185-211 (2021) · Zbl 1464.35348
[7] Jiang, Y. F.; Yang, L., Global solvability and stabilization in a three-dimensional cross-diffusion system modeling urban crime propagation, Acta Appl. Math., 178, 11 (2022) · Zbl 1486.35258
[8] Mei, L. F.; Wei, J. C., The existence and stability of spike solutions for a chemotaxis system modeling crime pattern formation, Math. Models Methods Appl. Sci., 30, 1727-1764 (2020) · Zbl 1455.35072
[9] Rodrguez, N.; Winkler, M., Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation, Math. Models Methods Appl. Sci., 30, 2105-2137 (2020) · Zbl 1451.35226
[10] Wang, Q.; Wang, D. Q.; Feng, Y. N., Global well-posedness and uniform boundedness of urban crime models: one-dimensional case, J. Differential Equations, 269, 6216-6235 (2020) · Zbl 1440.35329
[11] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 1747-1790 (2019) · Zbl 1428.35611
[12] Ahn, J., Global well-posedness and asymptotic stabilization for chemotaxis system with singal- dependent sensitivity, J. Differential Equations, 266, 6866-6904 (2019) · Zbl 1415.35036
[13] Lankeit, J.; Winkler, M., A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24, 33 (2017) · Zbl 1373.35166
[14] Winkler, M., The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26, 5, 987-1024 (2016) · Zbl 1383.35099
[15] Winkler, M., The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Eventual smoothness and equilibration of small-mass solutions (2016), preprint
[16] Winkler, M., Renormalized radial large-data solutions to the higher-dimensional Keller-Segel system with singular sensitivity and signal absorption, J. Differential Equations, 264, 2310-2350 (2018) · Zbl 1378.35165
[17] Zhao, X. D., Boundedness to a quasilinear chemotaxis-consumption system with singular sensitivity in dimension one, Z. Angew. Math. Phys., 72, 185 (2021) · Zbl 1475.92038
[18] Lankeit, J., Locally bounded global solutions to a chemotaxis consumption model with singular sesitivity and nonlinear diffusion, J. Differential Equations, 262, 4052-4084 (2017) · Zbl 1359.35103
[19] Tao, Y. S.; Wang, L. H.; Wang, Z. A., Large-time behavior of parabolic-parabolic chemotaxis model with logarithmic sensitivity in on dimesion, Discrete Contin. Dyn. Syst. Ser. B, 18, 821-845 (2013) · Zbl 1272.35040
[20] Lieberman, G. M., Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148, 77-99 (1987) · Zbl 0658.35050
[21] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248, 2889-2905 (2010) · Zbl 1190.92004
[22] Lieberman, G. M., Second Order Parabolic Differential Equations (1996), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0884.35001
[23] Tao, Y. S.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252, 692-715 (2012) · Zbl 1382.35127
[24] Ladyženskaja, O. A.; Solonnikov, V. A.; Uralćeva, N. N., Linear and Quasilinear Equations of Parabolic Type (1968), American Mathematical Society: American Mathematical Society Providence, R.I. · Zbl 0174.15403
[25] Bai, X. L.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.