×

Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation. (English) Zbl 1451.35226

Summary: We consider a class of macroscopic models for the spatio-temporal evolution of urban crime, as originally going back to M. B. Short et al. [ibid. 18, 1249–1267 (2008; Zbl 1180.35530)]. The focus here is on the question of how far a certain porous medium enhancement in the random diffusion of criminal agents may exert visible relaxation effects. It is shown that sufficient regularity of the non-negative source terms in the system and a sufficiently strong nonlinear enhancement ensure that a corresponding Neumann-type initial-boundary value problem, posed in a smoothly bounded planar convex domain, admits locally bounded solutions for a wide class of arbitrary initial data. Furthermore, this solution is globally bounded under mild additional conditions on the source terms. These results are supplemented by numerical evidence which illustrates smoothing effects in solutions with sharply structured initial data in the presence of such porous medium-type diffusion and support the existence of singular structures in the linear diffusion case, which is the type of diffusion proposed in [loc. cit.].

MSC:

35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
35B40 Asymptotic behavior of solutions to PDEs
35K55 Nonlinear parabolic equations
35D30 Weak solutions to PDEs

Citations:

Zbl 1180.35530

References:

[1] Amann, H., Dynamic theory of quasilinear parabolic systems III: Global existence, Math. Z.202 (1989) 219-250. · Zbl 0702.35125
[2] Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci.25 (2015) 1663-1763. · Zbl 1326.35397
[3] Bellomo, N., Berestycki, H., Brezzi, F. and Nadal, J.-P., Mathematics and complexity in life and human sciences, Math. Models Methods Appl. Sci.20 (2010) 1391-1395. · Zbl 1218.92001
[4] Berestycki, H., Rodríguez, N. and Ryzhik, L., Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul.11 (2013) 1097-1126. · Zbl 1288.35160
[5] Berestycki, H., Wei, J. and Winter, M., Existence of symmetric and asymmetric spikes for a crime hotspot model, SIAM J. Math. Anal.46 (2014) 691-719. · Zbl 1347.34035
[6] Cantrell, R. S., Cosner, C. and Manásevich, R., Global bifurcation of solutions for crime modeling equations, SIAM J. Appl. Math.44 (2012) 1340-1358. · Zbl 1248.35212
[7] Chaturapruek, S., Breslau, J., Yazdi, D., Kolokolnikov, T. and McCalla, S., Crime modeling with levý fights, SIAM J. Appl. Math.73 (2013) 1703-1720. · Zbl 1280.35158
[8] D’Orsogna, M. R. and Perc, M., Statistical physics of crime: A review, Phys. Life Rev.12 (2015) 1-21.
[9] Felson, M., Routine activities and crime prevention in the developing metropolis, Criminology25 (1987) 911-932.
[10] Freitag, M., Global solutions to a higher-dimensional system related to crime modeling, Math. Methods Appl. Sci.41 (2018) 6326-6335. · Zbl 1401.35203
[11] K. Fujie, Study of reaction-diffusion systems modeling chemotaxis, Ph.D. thesis, Tokyo University of Science (2016).
[12] Gu, Y., Wang, Q. and Yi, G., Stationary patterns and their selection mechanism of urban crime models with heterogeneous near-repeat victimization effect, Eur. J. Appl. Math.18 (2017) 1249-1267. · Zbl 1376.91125
[13] Heihoff, F., Generalized solutions for a system of partial differential equation arising from urban crime modeling with a logistic source term, Z. Angew. Math. Phys.71 (2020) 80. · Zbl 1434.35246
[14] Herrero, M. A. and Velázquez, J. J. L., A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa-Cl. Sci.24 (1997) 633-683. · Zbl 0904.35037
[15] Johnson, S. D., Bowers, K. and Hirschfeld, A., New insights into the spatial and temporal distribution of repeat victimisation, Br. J. Criminol.37 (1997) 224-241.
[16] Jones, P. A., Brantingham, P. J. and Chayes, L. R., Statistical models of criminal behavior: The effects of law enforcement actions, Math. Models Methods Appl. Sci.20 (2010) 1397-1423. · Zbl 1202.62177
[17] Kolokolnikov, T., Ward, M. J. and Wei, J., The stability of hotspot patterns for reaction-diffusion models of urban crime, Discrete Contin. Dyn. Syst. Ser. B19 (2014) 1373-1401. · Zbl 1304.35051
[18] Lloyd, D. J. B. and O’Farrell, H., On localised hotspots of an urban crime model, Physica D253 (2013) 23-39. · Zbl 1284.91486
[19] Lloyd, D. J. B., Santitissadeekorn, N. and Short, M. B., Exploring data assimilation and forecasting issues for an urban crime model, Eur. J. Appl. Math.27 (2016) 451-478. · Zbl 1408.91168
[20] Manásevich, R., Phan, Q. H. and Souplet, Ph., Global existence of solutions for a chemotaxis-type system arising in crime modeling, Eur. J. Appl. Math.24 (2013) 273-296. · Zbl 1284.35445
[21] Mei, L. and Wei, J., The existence and stability of spike solutions for a chemotaxis system modeling crime pattern formation, Math. Models Methods Appl. Sci. (2020). https://doi.org/10.1142/S0218202520500359 · Zbl 1455.35072
[22] Pitcher, A., Adding police to a mathematical model of burglary, Eur. J. Appl. Math.21 (2010) 401-419. · Zbl 1233.91225
[23] Porzio, M. M. and Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ.103 (1993) 146-178. · Zbl 0796.35089
[24] L. Ricketsen, A continuum model of residential burglary incorporating law enforcement (2010), https://pdfs.semanticscholar.org/db99/5b51540eb6302e4fbbc8aab2d6b317158d57.pdf.
[25] Rodriguez, N., On the global well-posedness theory for a class of PDE models for criminal activity, Physica D260 (2013) 191-200. · Zbl 1286.91110
[26] N. Rodriguez and M. Winkler, On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, preprint (2018), arXiv:1903.06331 [math.AP].
[27] Short, M. B., Brantingham, P. J., Bertozzi, A. L. and Tita, G. E., Dissipation and displacement of hotspots in reaction-diffusion models of crime, Proc. Natl. Acad. Sci. USA107 (2010) 3961-3965.
[28] Short, M. B., D’Orsogna, M. R., Brantingham, P. J. and Tita, G. E., Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol.25 (2009) 325-339.
[29] Short, M. B., D’Orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. and Chayes, L. B., A statistical model of criminal behavior, Math. Models Methods Appl. Sci.18 (2008) 1249-1267. · Zbl 1180.35530
[30] Tao, Y. and Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ.252 (2012) 692-715. · Zbl 1382.35127
[31] Y. Tao and M. Winkler, Global smooth solutions in a two-dimensional cross-diffusion system modeling urban crime, Commun. Math. Sci., to appear (2019).
[32] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, , Vol. 2 (North-Holland, Amsterdam, 1977). · Zbl 0383.35057
[33] Tse, W. H. and Ward, M. J., Hotspot formation and dynamics for a continuum model of urban crime, Eur. J. Appl. Math.27 (2016) 583-624. · Zbl 1408.91169
[34] Winkler, M., Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ.248 (2010) 2889-2905. · Zbl 1190.92004
[35] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl.100 (2013) 748-767. · Zbl 1326.35053
[36] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. Henri Poincaré — Anal. Non Linéaire36 (2019) 1747-1790. · Zbl 1428.35611
[37] Zipkin, J. R., Short, M. B. and Bertozzi, A. L., Cops on the dots in a mathematical model of urban crime and police response, Discrete Contin. Dyn. Syst. Ser. B19 (2014) 1479-1506. · Zbl 1304.35702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.