×

Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation. (English) Zbl 1428.35611

Summary: The system \[ \begin{cases} u_t = \Delta u - \chi \nabla \cdot(\frac{u}{v} \nabla v) - u v + B_1(x, t), \\ v_t = \Delta v + u v - v + B_2(x, t), \end{cases} \tag{\(\star\)} \] is considered in a disk \(\Omega \subset \mathbb{R}^2\), with a positive parameter \(\chi\) and given nonnegative and suitably regular functions \(B_1\) and \(B_2\) defined on \(\Omega \times(0, \infty)\). In the particular version obtained when \(\chi = 2\), (\(\star\)) was proposed in [M. B. Short et al., Math. Models Methods Appl. Sci. 18, 1249–1267 (2008; Zbl 1180.35530)] as a model for crime propagation in urban regions. Within a suitable generalized framework, it is shown that under mild assumptions on the parameter functions and the initial data the no-flux initial-boundary value problem for (\(\star\)) possesses at least one global solution in the case when all model ingredients are radially symmetric with respect to the center of \(\Omega\). Moreover, under an additional hypothesis on stabilization of the given external source terms in both equations, these solutions are shown to approach the solution of an elliptic boundary value problem in an appropriate sense. The analysis is based on deriving a priori estimates for a family of approximate problems, in a first step achieving some spatially global but weak initial regularity information which in a series of spatially localized arguments is thereafter successively improved. To the best of our knowledge, this is the first result on global existence of solutions to the two-dimensional version of the full original system (\(\star\)) for arbitrarily large values of \(\chi\).

MSC:

35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
35B40 Asymptotic behavior of solutions to PDEs
35K55 Nonlinear parabolic equations
35D30 Weak solutions to PDEs
35B45 A priori estimates in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
91D10 Models of societies, social and urban evolution

Citations:

Zbl 1180.35530
Full Text: DOI

References:

[1] Amann, H., Dynamic theory of quasilinear parabolic systems III. Global existence, Math. Z., 202, 219-250 (1989) · Zbl 0702.35125
[2] Bellomo, N.; Berestycki, H.; Brezzi, F.; Nadal, J.-P., Mathematics and complexity in life and human sciences, Math. Models Methods Appl. Sci., 20, 1391-1395 (2010) · Zbl 1218.92001
[3] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397
[4] Berestycki, H.; Wei, J.; Winter, M., Existence of symmetric and asymmetric spikes for a crime hotspot model, SIAM J. Math. Anal., 46, 691-719 (2014) · Zbl 1347.34035
[5] Cantrell, R. S.; Cosner, C.; Manásevich, R., Global bifurcation of solutions for crime modeling equations, SIAM J. Appl. Math., 44, 1340-1358 (2012) · Zbl 1248.35212
[6] Cohen, L. E.; Felson, M., Social change and crime rate trends: a routine activity approach, Am. Sociol. Rev., 44, 588-608 (1979)
[7] Di Perna, R.-J.; Lions, P.-L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130, 321-366 (1989) · Zbl 0698.45010
[8] D’Orsogna, M. R.; Perc, M., Statistical physics of crime: a review, Phys. Life Rev., 12, 1-21 (2015)
[9] Espejo, E.; Winkler, M., Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31, 1227-1259 (2018) · Zbl 1392.35042
[10] Felson, M., Routine activities and crime prevention in the developing metropolis, Criminology, 25, 911-932 (1987)
[11] M. Freitag, Global solutions to a higher-dimensional system related to crime modeling, preprint.; M. Freitag, Global solutions to a higher-dimensional system related to crime modeling, preprint. · Zbl 1401.35203
[12] Fujie, K., Study of Reaction-Diffusion Systems Modeling Chemotaxis (2016), Tokyo University of Science, PhD thesis
[13] Fujie, K.; Senba, T., Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst., Ser. B, 21, 81-102 (2016) · Zbl 1330.35051
[14] Giga, Y.; Sohr, H., Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102, 72-94 (1991) · Zbl 0739.35067
[15] Gu, Y.; Wang, Q.; Guangzeng, Y., Stationary patterns and their selection mechanism of Urban crime models with heterogeneous near-repeat victimization effect (2016), preprint · Zbl 1376.91125
[16] Herrero, M. A.; Velázquez, J. J.L., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 24, 633-683 (1997) · Zbl 0904.35037
[17] Hillen, T.; Painter, K. J.; Winkler, M., Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23, 165-198 (2013) · Zbl 1263.35204
[18] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 1, 52-107 (2005) · Zbl 1085.35065
[19] Johnson, S. D.; Bowers, K.; Hirschfeld, A., New insights into the spatial and temporal distribution of repeat victimisation, Br. J. Criminol., 37, 224-241 (1997)
[20] Kelling, G. L.; Wilson, J. Q., Broken Windows (1982)
[21] Kolokolnikov, T.; Ward, M. J.; Wei, J., The stability of hotspot patterns for reaction-diffusion models of urban crime, Discrete Contin. Dyn. Syst., Ser. B, 19, 1373-1401 (2014) · Zbl 1304.35051
[22] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Transl. Am. Math. Soc., vol. 23 (1968), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0174.15403
[23] Lankeit, J., A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39, 394-404 (2016) · Zbl 1333.35100
[24] Lankeit, J.; Winkler, M., A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data, Nonlinear Differ. Equ. Appl., 24, Article 49 pp. (2017), 33 pp. · Zbl 1373.35166
[25] Manásevich, R.; Phan, Q. H.; Souplet, Ph., Global existence of solutions for a chemotaxis-type system arising in crime modelling, Eur. J. Appl. Math., 24, 273-296 (2013) · Zbl 1284.35445
[26] Porzio, M. M.; Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 146-178 (1993) · Zbl 0796.35089
[27] Rodriguez, N., On the global well-posedness theory for a class of PDE models for criminal activity, Phys. D: Nonlinear Phenom., 260, 191-200 (2013) · Zbl 1286.91110
[28] Rodriguez, N.; Bertozzi, A., Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Models Methods Appl. Sci., 20, suppl., 1425-1457 (2010) · Zbl 1200.35308
[29] N. Rodriguez, M. Winkler, On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, preprint.; N. Rodriguez, M. Winkler, On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, preprint.
[30] Short, M. B.; D’Orsogna, M. R.; Brantingham, P. J.; Tita, G. E., Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol., 25, 325-339 (2009)
[31] Short, M. B.; D’Orsogna, M. R.; Pasour, V. B.; Tita, G. E.; Brantingham, P. J.; Bertozzi, A. L.; Chayes, L. B., A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, suppl., 1249-1267 (2008) · Zbl 1180.35530
[32] Stinner, C.; Winkler, M., Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal., Real World Appl., 12, 3727-3740 (2011) · Zbl 1268.35072
[33] Y. Tao, M. Winkler, Global smooth solutions in a two-dimensional cross-diffusion system modeling, urban crime, preprint.; Y. Tao, M. Winkler, Global smooth solutions in a two-dimensional cross-diffusion system modeling, urban crime, preprint.
[34] Tse, W. H.; Ward, M. J., Hotspot formation and dynamics for a continuum model of urban crime, Eur. J. Appl. Math., 27, 583-624 (2016) · Zbl 1408.91169
[35] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004
[36] Winkler, M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34, 176-190 (2011) · Zbl 1291.92018
[37] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.