×

Further investigations into the graph theory of \(\phi^4\)-periods and the \(c_2\) invariant. (English) Zbl 1520.81075

Summary: A Feynman period is a particular residue of a scalar Feynman integral which is both physically and number theoretically interesting. Two ways in which the graph theory of the underlying Feynman graph can illuminate the Feynman period are via graph operations which are period invariant and other graph quantities which predict aspects of the Feynman period, one notable example is known as the \(c_2\) invariant. We give results and computations in both these directions, proving a new period identity and computing its consequences up to \(11\) loops in \(\phi^4\)-theory, proving a \(c_2\) invariant identity, and giving the results of a computational investigation of \(c_2\) invariants at \(11\) loops.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T18 Feynman diagrams
05C85 Graph algorithms (graph-theoretic aspects)
05C31 Graph polynomials

References:

[1] J. Ax, Zeroes of polynomials over finite fields. Amer. J. Math. 86 (1964), 255-261 Zbl 0121.02003 MR 160775 · Zbl 0121.02003
[2] S. Bloch, H. Esnault, and D. Kreimer, On motives associated to graph polynomials. Comm. Math. Phys. 267 (2006), no. 1, 181-225 Zbl 1109.81059 MR 2238909 · Zbl 1109.81059
[3] D. J. Broadhurst and D. Kreimer, Knots and numbers in 4 theory to 7 loops and beyond. Internat. J. Modern Phys. C 6 (1995), no. 4, 519-524 Zbl 0940.81520 MR 1352337 · Zbl 0940.81520
[4] F. Brown, On the periods of some Feynman integrals. 2010, arXiv:0910.0114
[5] F. Brown and D. Doryn, Framings for graph hypersurfaces. 2013, arXiv:1301.3056
[6] F. Brown and O. Schnetz, A K3 in 4 . Duke Math. J. 161 (2012), no. 10, 1817-1862 Zbl 1253.14024 MR 2954618 · Zbl 1253.14024
[7] D. Broadhurst and O. Schnetz, Algebraic geometry informs perturbative quantum field theory. PoS LL2014 (2014) article id. 078 httpsW//pos.sissa.it/211/078/pdf
[8] F. Brown and O. Schnetz, Modular forms in quantum field theory. Commun. Number The-ory Phys. 7 (2013), no. 2, 293-325 Zbl 1290.81083 MR 3164866 · Zbl 1290.81083
[9] F. Brown and O. Schnetz, Single-valued multiple polylogarithms and a proof of the zig-zag conjecture. J. Number Theory 148 (2015), 478-506 Zbl 1395.11115 MR 3283191 · Zbl 1395.11115
[10] F. Brown, O. Schnetz, and K. Yeats, Properties of c 2 invariants of Feynman graphs. Adv. Theor. Math. Phys. 18 (2014), no. 2, 323-362 Zbl 1309.81174 MR 3273316 · Zbl 1309.81174
[11] F. Brown and K. Yeats, Spanning forest polynomials and the transcendental weight of Feynman graphs. Comm. Math. Phys. 301 (2011), no. 2, 357-382 Zbl 1223.05019 MR 2764991 · Zbl 1223.05019
[12] W. Chorney and K. Yeats, c 2 invariants of recursive families of graphs. Ann. Inst. Henri Poincaré D 6 (2019), no. 2, 289-311 Zbl 1414.05152 MR 3950656 · Zbl 1414.05152
[13] M. Golz, E. Panzer, and O. Schnetz, Graphical functions in parametric space. Lett. Math. Phys. 107 (2017), no. 6, 1177-1192 Zbl 1370.81132 MR 3647085 · Zbl 1370.81132
[14] C. Itzykson and J. B. Zuber, Quantum field theory. International Series in Pure and Applied Physics, McGraw-Hill, New York, 1980 Zbl 0453.05035 MR 585517 · Zbl 0453.05035
[15] D. M. Jackson, A. Kempf, and A. H. Morales, A robust generalization of the Legendre transform for QFT. J. Phys. A 50 (2017), no. 22, article id. 225201 Zbl 1367.81116 MR 3659109 · Zbl 1367.81116
[16] N. Koblitz, Introduction to elliptic curves and modular forms. Second edn., Grad. Texts Math. 97, Springer, New York, 1993 Zbl 0804.11039 MR 1216136 · Zbl 0804.11039
[17] M. Kontsevich and D. Zagier, Periods. In Mathematics unlimited -2001 and beyond, pp. 771-808, Springer, Berlin, 2001 Zbl 1039.11002 MR 1852188 · Zbl 0955.00011
[18] S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications. Encyclopaedia of Mathematical Sciences 141, Springer, Berlin, 2004 Zbl 1040.05001 MR 2036721
[19] A. Logan, New realizations of modular forms in Calabi-Yau threefolds arising from 4 theory. J. Number Theory 184 (2018), 342-383 Zbl 1420.11077 MR 3724169 · Zbl 1420.11077
[20] Maple 18, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. httpsW//www.maplesoft.com
[21] E. Panzer, Private communications, 2018
[22] E. Panzer, Hepp’s bound for Feynman graphs and matroids. Ann. Inst. Henri Poincaré D (2022), DOI 10.4171/AIHPD/126 · Zbl 1520.81076 · doi:10.4171/AIHPD/126
[23] E. Panzer and O. Schnetz, The Galois coaction on 4 periods. Commun. Number Theory Phys. 11 (2017), no. 3, 657-705 Zbl 1439.81046 MR 3713353 · Zbl 1439.81046
[24] B. Parisse and R. De Graeve, Giac/Xcas, v. 1.4.9. 2018
[25] Sage Developers, SageMath, the Sage Mathematics Software System, v. 8.2. 2018, httpW//www.sagemath.org
[26] O. Schnetz, Quantum periods: a census of 4 -transcendentals. Commun. Number Theory Phys. 4 (2010), no. 1, 1-47 Zbl 1202.81160 MR 2679376 · Zbl 1202.81160
[27] O. Schnetz, HyperlogProcedures (Maple package). 2018, httpsW//www.math.fau.de/person/oliver-schnetz/
[28] O. Schnetz, Quantum field theory over F q . Electron. J. Combin. 18 (2011), no. 1, article id. 102 Zbl 1217.05110 MR 2811071
[29] O. Schnetz, Graphical functions and single-valued multiple polylogarithms. Commun. Number Theory Phys. 8 (2014), no. 4, 589-675 Zbl 1320.81075 MR 3318386 · Zbl 1320.81075
[30] O. Schnetz, Numbers and functions in quantum field theory. Phys. Rev. D 97 (2018), no. 8, article id. 085018 MR 3846506
[31] O. Schnetz, Geometries in perturbative quantum field theory. Commun. Number Theory Phys. 15 (2021), no. 4, 743-791 Zbl 1473.81173 MR 4323269 · Zbl 1473.81173
[32] Speciality Research Linux Servers, https://uwaterloo.ca/ math-faculty-computing-facility/services/specialty-research-linux-servers
[33] K. Yeats, Some combinatorial interpretations in perturbative quantum field theory. In Feyn-man amplitudes, periods and motives, pp. 261-289, Contemp. Math. 648, Amer. Math. Soc., Providence, RI, 2015 Zbl 1346.81090 MR 3415418 · Zbl 1346.81090
[34] K. Yeats, A few c 2 invariants of circulant graphs. Commun. Number Theory Phys. 10 (2016), no. 1, 63-86 Zbl 1345.81047 MR 3521909 · Zbl 1345.81047
[35] K. Yeats, A combinatorial perspective on quantum field theory. SpringerBriefs Math. Phys. 15, Springer, Cham, 2017 Zbl 1360.81007 MR 3559899
[36] K. Yeats, A special case of completion invariance for the c 2 invariant of a graph. Canad. J. Math. 70 (2018), no. 6, 1416-1435 Zbl 1411.05133 MR 3850549 · Zbl 1411.05133
[37] K. Yeats, A study on prefixes of c 2 invariants. In Algebraic combinatorics, resurgence, moulds and applications (CARMA), Vol. 2, pp. 367-383, IRMA Lect. Math. Theor. Phys. 32, EMS Publ. House, Berlin, 2020 Zbl 1442.81029 MR 4321991 · Zbl 1442.81029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.