×

A \(K3\) in \(\phi^{4}\). (English) Zbl 1253.14024

The present paper concerns graph hypersurfaces and their number of points over finite fields. In 1997 Kontsevich conjectured that the number of points of graph hypersurfaces over a finite field \(\mathbb{F}_q\, (q=p^n, p \text{ a prime})\) is a polynomial or a quasi-polynomial in \(q\). This conjecture which was inspired by Feynman integral computations in quantum field theory, was verified by Stembridge for all graphs on at most 12 edges, but it tends to be false for large graphs by work of Belkale and Brosnan.
The present paper provides a sufficient combinatorial criterion for a graph to have polynomial point-counts. It also constructs some explicit counterexamples to Kontsevich’s conjecture which are actually arising from \(\phi^4\) theory. Their counting functions are related to the weight 3 Hecke eigenform \[ (\eta(\tau)\eta(7\tau))^3 \] which is attached to the singular \(K3\) surface of discriminant \(-7\).

MSC:

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
05A15 Exact enumeration problems, generating functions
11G25 Varieties over finite and local fields
14M12 Determinantal varieties
81T18 Feynman diagrams

Software:

OEIS

References:

[1] P. Aluffi and M. Marcolli, “Feynman motives and deletion-contraction relations” in Topology of Algebraic Varieties and Singularities , Contemp. Math. 538 , Amer. Math. Soc., Providence, 2011, 21-64. · Zbl 1221.81076 · doi:10.1090/conm/538/10594
[2] P. Belkale and P. Brosnan, Matroids, motives, and a conjecture of Kontsevich , Duke Math. J. 116 (2003), 147-188. · Zbl 1076.14026 · doi:10.1215/S0012-7094-03-11615-4
[3] S. Bloch, “Motives associated to sums of graphs” in The Geometry of Algebraic Cycles , Clay Math. Proc. 9 , Amer. Math. Soc., Providence, 2010, 137-143. · Zbl 1207.81087
[4] S. Bloch, H. Esnault, and D. Kreimer, On motives associated to graph polynomials , Comm. Math. Phys. 267 (2006), 181-225. · Zbl 1109.81059 · doi:10.1007/s00220-006-0040-2
[5] D. J. Broadhurst and D. Kreimer, Knots and numbers in \(\phi^{4}\) theory to \(7\) loops and beyond , Internat. J. Modern Phys. C 6 (1995), 519-524. · Zbl 0940.81520 · doi:10.1142/S012918319500037X
[6] F. Brown, Mixed Tate motives over \(\mathbb{Z}\) , Annals of Math. (2) 175 (2012), 949-976. · Zbl 1278.19008
[7] F. Brown, The massless higher-loop two-point function , Comm. Math. Phys. 287 (2009), 925-958. · Zbl 1196.81130 · doi:10.1007/s00220-009-0740-5
[8] F. Brown, On the periods of some Feynman graphs , preprint, [math.AG] 0910.0114v2 · Zbl 1228.81214 · doi:10.1090/conm/539/10626
[9] F. Brown and K. Yeats, Spanning forest polynomials and the transcendental weight of Feynman graphs , Comm. Math. Phys. 301 (2011), 357-382. · Zbl 1223.05019 · doi:10.1007/s00220-010-1145-1
[10] F. Chung and C. Yang, On polynomials of spanning trees , Ann. Comb. 4 (2000), 13-25. · Zbl 0947.05050 · doi:10.1007/PL00001273
[11] D. Doryn, Cohomology of graph hypersurfaces associated to certain Feynman graphs , Commun. Number Theory Phys. 4 (2010), 365-415. · Zbl 1219.81201 · doi:10.4310/CNTP.2010.v4.n2.a3
[12] D. Doryn, On one example and one counterexample in counting rational points on graph hypersurfaces , Lett. Math. Phys. 97 (2011), 303-315. · Zbl 1278.81089 · doi:10.1007/s11005-011-0501-1
[13] H. Esnault and E. Viehweg, On a rationality question in the Grothendieck ring of varieties , Acta Math. Vietnam. 35 (2010), 31-41. · Zbl 1193.14029
[14] G. Kirchhoff, Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme gehührt wird , Ann. Phys. Chem. 72 (1847), 497-508.
[15] R. Livné, Motivic orthogonal two-dimensional representations of \(\operatorname{Gal}(\overline{\mathbf{Q}}/{\mathbf{Q}})\) , Israel J. Math. 92 (1995), 149-156. · Zbl 0847.11035 · doi:10.1007/BF02762074
[16] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences , (accessed 26 April 2012).
[17] W. R. Parry, A negative result on the representation of modular forms by theta series , J. Reine Angew. Math. 310 (1979), 151-170. · Zbl 0409.10014 · doi:10.1515/crll.1979.310.151
[18] O. Schnetz, Quantum periods: A census of \(\phi^{4}\)-transcendentals , Commun. Number Theory Phys. 4 (2010), 1-47. · Zbl 1202.81160 · doi:10.4310/CNTP.2010.v4.n1.a1
[19] O. Schnetz, Quantum field theory over \(F_{q}\) , Electron. J. Combin. 18 (2011), no. 102. · Zbl 1217.05110
[20] M. Schütt, CM newforms with rational coefficients , Ramanujan J. 19 (2009), 187-205. · Zbl 1226.11057 · doi:10.1007/s11139-008-9147-8
[21] J.-P. Serre, Cours d’arithmétique , 2nd ed., Le Mathématicien 2 , Presses Universitaires de France, Paris, 1977. · Zbl 0376.12001
[22] T. Shioda and H. Inose, “On singular \(K3\) surfaces” in Complex Analysis and Algebraic Geometry , Iwanami Shoten, Tokyo, 1977, 119-136. · Zbl 0374.14006 · doi:10.1017/CBO9780511569197.010
[23] R. P. Stanley, Spanning trees and a conjecture of Kontsevich , Ann. Comb. 2 (1998), 351-363. · Zbl 0927.05087 · doi:10.1007/BF01608530
[24] J. R. Stembridge, Counting points on varieties over finite fields related to a conjecture of Kontsevich , Ann. Comb. 2 (1998), 365-385. · Zbl 0927.05002 · doi:10.1007/BF01608531
[25] S. Weinberg, High-energy behavior in quantum field-theory , Phys. Rev. (2) 118 (1960), 838-849. · Zbl 0098.20403 · doi:10.1103/PhysRev.118.838
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.