×

Single-valued multiple polylogarithms and a proof of the zig-zag conjecture. (English) Zbl 1395.11115

Summary: A long-standing conjecture in quantum field theory due to D. J. Broadhurst and D. Kreimer [Int. J. Mod. Phys. C 6, No. 4, 519–524 (1995; Zbl 0940.81520)] states that the periods of the zig-zag graphs are a certain explicit rational multiple of the odd values of the Riemann zeta function. In this paper we prove this conjecture by constructing a certain family of single-valued multiple polylogarithms which correspond to multiple zeta values \(\zeta(2, \ldots, 2, 3, 2, \ldots 2)\) and using the method of graphical functions. The zig-zag graphs are the only infinite family of primitive graphs in \(\phi_4^4\) theory (in fact, in any renormalisable quantum field theory in four dimensions) whose periods are now known.

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
81T18 Feynman diagrams
11G55 Polylogarithms and relations with \(K\)-theory

Citations:

Zbl 0940.81520

References:

[1] Ball, K.; Rivoal, T., Irrationalite d’une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math., 146, 1, 193-207 (2001) · Zbl 1058.11051
[2] Beilinson, A.; Deligne, P., Interprétation Motivique de la Conjecture de Zagier Reliant Polylogarithmes et Régulateurs, Proc. Sympos. Pure Math., vol. 55, Part 2 (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0799.19004
[3] Belkale, P.; Brosnan, P., Matroids, motives, and a conjecture of Kontsevich, Duke Math. J., 116, 1, 147-188 (2003) · Zbl 1076.14026
[4] Bloch, S.; Esnault, H.; Kreimer, D., On motives associated to graph polynomials, Comm. Math. Phys., 267, 1, 181-225 (2006) · Zbl 1109.81059
[5] Broadhurst, D. (1985), Open University report OUT-4102-18
[6] Broadhurst, D., Evaluation of a class of Feynman diagrams for all numbers of loops and dimensions, Phys. Lett. B, 164, 356-360 (1985)
[7] Broadhurst, D.; Kreimer, D., Knots and numbers in \(\phi^4\) theory to 7 loops and beyond, Internat. J. Modern Phys. C, 6, 519 (1995) · Zbl 0940.81520
[8] Brown, F., Single-valued multiple polylogarithms in one variable, C. R. Math. Acad. Sci. Paris, 338, 527-532 (2004) · Zbl 1048.11053
[9] Brown, F., On the periods of some Feynman integrals (2009)
[10] Brown, F., On the decomposition of motivic multiple zeta values, (Galois-Teichmüller Theory and Arithmetic Geometry. Galois-Teichmüller Theory and Arithmetic Geometry, Adv. Stud. Pure Math., vol. 63 (2012), Math. Soc. Japan: Math. Soc. Japan Tokyo), 31-58 · Zbl 1321.11087
[11] Brown, F., Mixed Tate motives over \(Z\), Ann. of Math., 175, 1, 949-976 (2012) · Zbl 1278.19008
[12] Brown, F., Iterated integrals in quantum field theory, (Geometric and Topological Methods for Quantum Field Theory (2013), Cambridge Univ. Press), 188-240 · Zbl 1295.81072
[13] Brown, F.; Doryn, D., Framings for graph hypersurfaces (2013)
[14] Brown, F.; Schnetz, O., A K3 in \(\phi^4\), Duke Math. J., 161, 10 (2012) · Zbl 1253.14024
[15] Brown, F.; Schnetz, D., The Galois coaction on \(\phi^4\) periods (2013), in preparation
[16] Davydychev, A.; Ussyukina, N., Exact results for three- and four-point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B, 305, 1-2, 136-143 (1993)
[17] Drummond, J., Generalised ladders and single-valued polylogarithms (2012), Talk given at D. Broadhurst’s birthday conference, Berlin, 27 June 2012
[18] Gangl, H.; Zagier, D., Classical and elliptic polylogarithms and special values of \(L\)-series, (The arithmetic and geometry of algebraic cycles. The arithmetic and geometry of algebraic cycles, Banff, AB, 1998. The arithmetic and geometry of algebraic cycles. The arithmetic and geometry of algebraic cycles, Banff, AB, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 548 (2000), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 561-615 · Zbl 0990.11041
[19] Hoffman, M., The algebra of multiple harmonic series, J. Algebra, 194, 477-495 (1997) · Zbl 0881.11067
[20] Kazakov, D., The method of uniqueness, a new powerful technique for multiloop calculations, Phys. Lett. B, 133, 6, 406 (1983)
[21] Kirchhoff, G., Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird, Ann. Phys. und Chem., 72, 12, 497-508 (1847)
[22] Knizhnik, V.; Zamolodchikov, A., Current algebras and Wess-Zumino models in two dimensions, Nuclear Phys. B, 247, 83-103 (1984) · Zbl 0661.17020
[23] Kontsevich, M.; Zagier, D., Periods, (Engquis, B.; Schmid, W., Mathematics unlimited - 2001 and beyond (2001), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York), 771 · Zbl 1039.11002
[24] Lappo-Danilevskii, I., Mémoires sur la théorie des systèmes des équations différentielles linéaires (1953), Chelsea: Chelsea New York · Zbl 0051.32301
[25] Li, Z., Another proof of Zagier’s evaluation formula of the multiple zeta values \(\zeta(2, \ldots, 2, 3, 2, \ldots, 2) (2012)\)
[26] Schnetz, O., Quantum periods: a census of \(\phi^4\) transcendentals, Commun. Number Theory Phys., 4, 1, 1-48 (2010) · Zbl 1202.81160
[27] Schnetz, O., Single-valued polylogs and the zig-zag conjecture (2012), Talk given at D. Broadhurst’s birthday conference, Berlin, 25 June
[28] Schnetz, O., Evaluation of the period of a family of triangle and box ladder graphs (2012)
[29] Schnetz, O., Graphical functions and single-valued multiple polylogarithms (2013) · Zbl 1320.81075
[30] Ussyukina, N., Calculation of multiloop diagrams in high orders of perturbation theory, Phys. Lett. B, 267, 382 (1991)
[31] Weinberg, S., High-energy behavior in quantum field theory, Phys. Rev., 118, 3, 838-849 (1960) · Zbl 0098.20403
[32] Wojtkowiak, Z., A construction of analogs of the Bloch-Wigner function, Math. Scand., 65, 1, 140-142 (1989) · Zbl 0698.33002
[33] Zagier, D., The remarkable dilogarithm, J. Math. Phys. Sci., 22, 131-145 (1988), in: Number theory and related topics. Papers presented at the Ramanujan Colloquium, Bombay 1988, TIFR and Oxford University Press, pp. 231-249 (1989) and · Zbl 0669.33001
[34] Zagier, D., The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Ann., 286, 1-3, 613-624 (1990) · Zbl 0698.33001
[35] Zagier, D., Evaluation of the multiple zeta values \(\zeta(2, \ldots, 2, 3, 2, \ldots, 2)\), Ann. of Math., 175, 1, 977-1000 (2012) · Zbl 1268.11121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.