×

On modular cohomotopy groups. (English) Zbl 1520.55011

The cohomotopy groups \(\pi^n (X) = [X, S^n]\) consisting of homotopy classes of base point preserving continuous maps from a CW-complex \(X\) into the \(n\)-sphere with \(\dim(X) \leq 2n-2\) were investigated by K. Borsuk [C. R. Acad. Sci., Paris 202, 1400–1403 (1936; Zbl 0014.03903)] and E. Spanier [Ann. Math. (2) 50, 203–245 (1949; Zbl 0032.12402)]. The generalized stable cohomotopy groups \(\pi^n (X,A;G) = [X,A ; M(G,n),*]\) of a CW-pair \((X,A)\) of dimension at most \(2n-2\) were developed by F. P. Peterson [Am. J. Math. 78, 259–281 (1956; Zbl 0071.38505)], where \(M(G,n)\) is the Moore space of type \((G,n)\).
In this paper under review, the authors focus on the study of the so-called modular cohomotopy groups \(\pi^n (X; \mathbb{Z}/p^r ) = [X, M(\mathbb{Z}/p^r, n)]\) consisting of homotopy classes of base point preserving continuous maps from a CW-complex \(X\) to the mod \(p^r\) Moore space \(M(\mathbb{Z}/p^r, n)\), where \(p\) is a prime number. The authors show that if \(X\) is a CW-complex of dimension at most \(n+2p-3\) and \(n \geq 2p-1\), then, for \(G = \mathbb{Z}_{(p)}\) or \(\mathbb{Z}/p^r\) with \(r \geq 1\), there is a short exact sequence \[ 0 \longrightarrow T_{\Omega \mathcal{P}^1_G}(X) \longrightarrow \pi^n(X,G) \stackrel{h^n_G}{\longrightarrow} H^n(X,G) \longrightarrow 0 \] of abelian groups, where \(\mathcal{P}^1_G : K(G,n) \longrightarrow K(\mathbb{Z}/p,n ) \stackrel{\mathcal{P}^1}{\longrightarrow} K(\mathbb{Z}/p, n+2p-2)\), and \(T_{\Omega \mathcal{P}^1_G}(X) = H^{n+2p-3} (X; \mathbb{Z}/p)/\mathcal{P}^1_G (H^{n-1}(X;G))\). They construct various short exact sequences with respect to cohomotopy groups, and give conditions for the splitness of the short exact sequences. The authors concretely prove that if \(X\) is a finite complex of dimension at most \(4n-3\) with \(n \geq 2\), then, for each prime \(p \geq 5\), there is an exact sequence \[ 0 \longrightarrow \pi^{2n-1} (X; \mathbb{Z}_{(p)}) \otimes \mathbb{Z}/p^r \longrightarrow \pi^{2n-1} (X; \mathbb{Z}/p^r) \longrightarrow \pi^{2n+1} (\Sigma X; \mathbb{Z}_{(p)}) \] of abelian groups as a generalization of Peterson’s exact sequence theorem for cohomotopy with \(\mathbb{Z}/p^r\)-coefficients.

MSC:

55Q55 Cohomotopy groups
55P45 \(H\)-spaces and duals

References:

[1] Adams, J. F., The sphere, considered as an H-space mod p, Quarterly Journal of Mathematics. Oxford, 12, 52-60 (1961) · Zbl 0119.18701 · doi:10.1093/qmath/12.1.52
[2] Anick, D., Differential Algebras in Topology (1993), Wellesley, MA: A K Peters, Wellesley, MA · Zbl 0770.55001 · doi:10.1201/9781439864593
[3] Arkowitz, M., Introduction to Homotopy Theory (2011), New York: Springer, New York · Zbl 1232.55001 · doi:10.1007/978-1-4419-7329-0
[4] Auckly, D.; Kapitanski, L., Analysis of S^2-valued maps and Faddeev’s model, Communications in Mathematical Physics, 256, 611-620 (2005) · Zbl 1082.58017 · doi:10.1007/s00220-005-1289-6
[5] Barcus, W. D.; Meyer, J-P, The suspension of a loop space, American Journal of Mathematics, 80, 895-920 (1958) · Zbl 0086.37504 · doi:10.2307/2372839
[6] Bauer, S.; Furuta, M., A stable cohomotopy refinement of Seiberg—Witten invariants. I, Inventiones Mathematicae, 155, 1-19 (2004) · Zbl 1050.57024 · doi:10.1007/s00222-003-0288-5
[7] Baues, H-J; Hennes, M., The homotopy classification of (n − 1)-connected (n + 3)-dimensional polyhedra, n ≥ 4, Topology, 30, 373-408 (1991) · Zbl 0735.55002 · doi:10.1016/0040-9383(91)90020-5
[8] Borsuk, K., Sur les groupes des classes de transformations continues, Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 202, 1400-1403 (1936) · JFM 62.0677.05
[9] Cohen, F. R.; Moore, J. C.; Neisendorfer, J. A., The double suspension and exponents of the homotopy groups of spheres, Annals of Mathematics, 110, 549-565 (1979) · Zbl 0443.55009 · doi:10.2307/1971238
[10] Eilenberg, S.; Steenrod, N., Foundations of Algebraic Topology (1952), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0047.41402 · doi:10.1515/9781400877492
[11] Gray, B., On the iterated suspension, Topology, 27, 301-310 (1988) · Zbl 0668.55005 · doi:10.1016/0040-9383(88)90011-0
[12] Gray, B.; Theriault, S. D., An elementary construction of Anick’s fibration, Geometry & Topology, 14, 243-275 (2010) · Zbl 1185.55011 · doi:10.2140/gt.2010.14.243
[13] Hansen, V. L., On spaces of maps of n-manifolds into the n-sphere, Transactions of the American Mathematical Society, 265, 273-281 (1981) · Zbl 0479.55007
[14] Hatcher, A., Algebraic Topology (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1044.55001
[15] Hilton, P., Homotopy Theory and Duality (1965), New York—London—Paris: Gordon and Breach Science Publishers, New York—London—Paris
[16] James, I. M., Reduced product spaces, Annals of Mathematics, 62, 170-197 (1955) · Zbl 0064.41505 · doi:10.2307/2007107
[17] Kirby, R.; Melvin, P.; Teichner, P., Cohomotopy sets of 4-manifolds, Proceedings of the Freedman Fest, 161-190 (2012), Coventry: Geometry & Topology, Coventry · Zbl 1273.57012 · doi:10.2140/gtm.2012.18.161
[18] Konstantis, P., A counting invariant for maps into spheres and for zero loci of sections of vector bundles, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 90, 183-199 (2020) · Zbl 1476.55037 · doi:10.1007/s12188-020-00228-6
[19] Konstantis, P., Vector bundles and cohomotopies of spin 5-manifolds, Homology, Homotopy and Applications, 23, 143-158 (2021) · Zbl 1508.57036 · doi:10.4310/HHA.2021.v23.n1.a9
[20] Korepin, V. E.; Faddeev, L. D., Quantization of solitons, Teoreticheskaya i Matematicheskaya Fizika, 25, 147-163 (1975)
[21] Kosinski, A. A., Differential Manifolds (1993), Boston, MA: Academic Press, Boston, MA · Zbl 0767.57001
[22] Larmore, L. L.; Thomas, E., Mappings into loop spaces and central group extensions, Mathematische Zeitschrift, 128, 277-296 (1972) · Zbl 0254.55010 · doi:10.1007/BF01111568
[23] Larmore, L. L.; Thomas, E., Group extensions and principal fibrations, Mathematica Scandinavica, 30, 227-248 (1972) · Zbl 0254.55009 · doi:10.7146/math.scand.a-11078
[24] May, J. P., A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), 153-231 (1970), Berlin: Springer, Berlin · Zbl 0242.55023 · doi:10.1007/BFb0058524
[25] Neisendorfer, J., Algebraic Methods in Unstable Homotopy Theory (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1190.55001 · doi:10.1017/CBO9780511691638
[26] Peterson, F. P., Generalized cohomotopy groups, American Journal of Mathematics, 78, 259-281 (1956) · Zbl 0071.38505 · doi:10.2307/2372515
[27] Pontrjagin, L., A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Matematicheskii Sbornik, 9, 51, 331-363 (1941) · JFM 67.0736.01
[28] Selick, P., The fibre of the double suspension is an H-space, Canadian Mathematical Bulletin, 28, 124-128 (1985) · Zbl 0527.55013 · doi:10.4153/CMB-1985-015-6
[29] Spanier, E., Borsuk’s cohomotopy groups, Annals of Mathematics, 50, 203-245 (1949) · Zbl 0032.12402 · doi:10.2307/1969362
[30] Steenrod, N. E., Products of cocycles and extensions of mappings, Annals of Mathematics, 48, 290-320 (1947) · Zbl 0030.41602 · doi:10.2307/1969172
[31] Taylor, L. R., The principal fibration sequence and the second cohomotopy set, Proceedings of the Freedman Fest, 235-251 (2012), Coventry: Geometry & Topology, Coventry · Zbl 1270.55012 · doi:10.2140/gtm.2012.18.235
[32] Theriault, S. D., Anick’s spaces and the double loops of odd primary Moore spaces, Transactions of the American Mathematical Society, 353, 1551-1566 (2001) · Zbl 0961.55013 · doi:10.1090/S0002-9947-00-02622-2
[33] Theriault, S. D., Properties of Anick’s spaces, Transactions of the American Mathematical Society, 353, 1009-1037 (2001) · Zbl 0992.55008 · doi:10.1090/S0002-9947-00-02623-4
[34] Toda, H., p-primary components of homotopy groups. IV. Compositions and toric constructions, Memoirs of the College of Science. University of Kyoto. Series A. Mathematics, 32, 297-332 (1959) · Zbl 0095.16802
[35] Toda, H., Composition Methods in Homotopy Groups of Spheres (1962), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0101.40703
[36] West, R. W., Some cohomotopy of projective space, Indiana University Mathematics Journal, 20, 807-827 (1971) · Zbl 0213.24902 · doi:10.1512/iumj.1971.20.20064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.