×

A counting invariant for maps into spheres and for zero loci of sections of vector bundles. (English) Zbl 1476.55037

The set of unrestricted homotopy classes \(\pi^n(M)=[M, \mathbb{S}^n]\), where \(M\) is a closed and connected spin \((n + 1)\)-manifold is called the \(n\)-th cohomotopy group of \(M\). Using homotopy theory it is known that \(\pi^n(M) = H^n(M,\mathbb{Z})\oplus \mathbb{Z}_2\).
L. S. Pontryagin [Transl., Ser. 2, Am. Math. Soc. 11, 1–114 (1959; Zbl 0084.19002)] computed the (stable) homotopy group \(\pi_{n+1}(\mathbb{S}^n)\) for \(n \ge 3\) using differential topology. This paper generalizes his idea and provides a geometrical description of the \(\mathbb{Z}_2\) summand in \(\pi^n(M)\). Namely, the \(\mathbb{Z}_2\) number can be computed by counting embedded circles in \(M\) with a certain framing of their normal bundle.

Finally, it is observed that the zero locus of a section in an oriented rank \(n\) vector bundle \(E\to M\) defines an element in \(\pi^n(M)\) and it turns out that the \(\mathbb{Z}_2\) part is an invariant of the isomorphism class of \(E\). As an application, the author provides a simple proof of the well-known fact that the maximal number of linear independent vector fields on \(\mathbb{S}^{4n+1}\) is equal to \(1\).

MSC:

55Q55 Cohomotopy groups
55Q05 Homotopy groups, general; sets of homotopy classes
57R22 Topology of vector bundles and fiber bundles

Citations:

Zbl 0084.19002

References:

[1] Adams, JF, Vector fields on spheres, Bull. Am. Math. Soc., 68, 39-41 (1962) · Zbl 0107.40403 · doi:10.1090/S0002-9904-1962-10693-4
[2] Atiyah, MF; Hirzebruch, F., Bott periodicity and the parallelizability of the spheres, Proc. Cambridge Philos. Soc., 57, 223-226 (1961) · Zbl 0108.35902 · doi:10.1017/S0305004100035088
[3] Borsuk, K., Sur un espace des transformations continues et ses applications topologiques, Monatsh. Math. Phys., 38, 1, 381-386 (1931) · Zbl 0002.29002 · doi:10.1007/BF01700712
[4] Bott, R.; Tu, LW, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics (1982), New York-Berlin: Springer, New York-Berlin · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[5] Davis, JF; Kirk, P., Lecture Notes in Algebraic Topology. Graduate Studies in Mathematics (2001), Providence: American Mathematical Society, Providence · Zbl 1018.55001
[6] Eckmann, B., Systeme von Richtungsfeldern in Sphären und stetige Lösungen komplexer linearer Gleichungen, Comment. Math. Helv., 15, 1-26 (1943) · Zbl 0027.14401 · doi:10.1007/BF02565628
[7] Guijarro, L.; Schick, T.; Walschap, G., Bundles with spherical Euler class, Pacific J. Math., 207, 2, 377-391 (2002) · Zbl 1065.53040 · doi:10.2140/pjm.2002.207.377
[8] Kirby, R., Melvin, P., Teichner, P.: Cohomotopy sets of 4-manifolds. In: Proceedings of the Freedman Fest (2012), vol. 18 of Geom. Topol. Monogr., Geom. Topol. Publ., Coventry, pp. 161-190 · Zbl 1273.57012
[9] Konstantis, P.: Deforming a section to a section without zeros. MathOverflow · Zbl 1411.57045
[10] Konstantis, P.: Vector bundles and cohomotopies of spin 5-manifolds. to appear in Homology, Homotopy and Applications · Zbl 1508.57036
[11] Larmore, LL; Thomas, E., Group extensions and principal fibrations, Math. Scand., 30, 227-248 (1972) · Zbl 0254.55009 · doi:10.7146/math.scand.a-11078
[12] Lawson, HB Jr; Michelsohn, M-L, Spin Geometry. Princeton Mathematical Series (1989), Princeton: Princeton University Press, Princeton · Zbl 0688.57001
[13] Milnor, J., Some consequences of a theorem of Bott, Ann. Math., 2, 68, 444-449 (1958) · Zbl 0085.17301 · doi:10.2307/1970255
[14] J, Milnor, Spin structures on manifolds, Enseignement Math, 9, 2, 198-203 (1963) · Zbl 0116.40403
[15] Milnor, JW, Topology from the Differentiable Viewpoint. Based on Notes by David W. Weaver (1965), Charlottesville: The University Press of Virginia, Charlottesville · Zbl 1025.57002
[16] Pontryagin, L.S.: Smooth manifolds and their applications in homotopy theory. In: American Mathematical Society Translations, Series 2, Vol. 11. American Mathematical Society, Providence, 1959, pp. 1-114 · Zbl 0084.19002
[17] Repovš, D.; Skopenkov, M.; Spaggiari, F., On the Pontryagin-Steenrod-Wu theorem, Israel J. Math., 145, 341-347 (2005) · Zbl 1065.57028 · doi:10.1007/BF02786699
[18] Spanier, E., Borsuk’s cohomotopy groups, Ann. Math., 2, 50, 203-245 (1949) · Zbl 0032.12402 · doi:10.2307/1969362
[19] Steenrod, NE, Products of cocycles and extensions of mappings, Ann. Math., 2, 48, 290-320 (1947) · Zbl 0030.41602 · doi:10.2307/1969172
[20] Taylor, L.R.: The principal fibration sequence and the second cohomotopy set. In: Proceedings of the Freedman Fest (2012), vol. 18 of Geom. Topol. Monogr., Geom. Topol. Publ., Coventry, pp. 235-251 · Zbl 1270.55012
[21] Thom, R., Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28, 17-86 (1954) · Zbl 0057.15502 · doi:10.1007/BF02566923
[22] Thomas, E., The index of a tangent \(2\)-field, Comment. Math. Helv., 42, 86-110 (1967) · Zbl 0153.53504 · doi:10.1007/BF02564413
[23] Whitehead, GW, Homotopy properties of the real orthogonal groups, Ann. Math., 2, 43, 132-146 (1942) · Zbl 0060.41415 · doi:10.2307/1968885
[24] Wu, W-T, Classes caractéristiques et \(i\)-carrés d’une variété, C. R. Acad. Sci. Paris, 230, 508-511 (1950) · Zbl 0035.11002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.