×

Anick’s spaces and the double loops of odd primary Moore spaces. (English) Zbl 0961.55013

Let \(p\) be an odd prime and assume all spaces and maps have been localised at \(p\). For \(m \geq 2\), let \(P^{m}(p^{r})\) denote the fibre of the map of degree \(p^{r}\) on \(S^{m-1}\). Let \(H: \Omega S^{2n+1} \rightarrow \Omega S^{2n+1}\) denote the James-Hopf map and let \(C(n)\) denote the fibre of the double suspension map \(E^{2} : S^{2n-1} \rightarrow \Omega^{2}S^{2n+1}\). The author describes a series of four long-standing conjectures posed in [F. R. Cohen, J. C. Moore and J. A. Neisendorfer, Ann. Math. (2) 110, 549-565 (1979; Zbl 0443.55009)] of which the central one is that \(C(n)\) is a double loop space of the form \(C(n) = \Omega^{2} T_{\infty}^{2np - 1}(p)\), where \(\{ T_{k}^{2n-1}(p^{r})\); \(0 \leq k \leq \infty \}\) is a sequence of H-spaces constructed in [S. D. Theriault, Properties of Anick’s spaces, Trans. Am. Math. Soc. 353, No. 3, 1009-1037 (2000)]. For \(p \geq 5\) these spaces originated in [D. Anick, Differential algebras in topology, Res. Notes Math. 3, A. K. Peters, Ltd., Wellesley, MA (1993)]. Writing \(T_{k}\) for \(T_{k}^{2n-1}(p^{r})\), the author shows that \(\Omega T_{\infty}\) is a retract of \(\Omega T_{k}\) if \(k \geq 1\). The proof uses the spaces \(\{ G_{k} \}\) introduced by Anick and the fact that \(\Omega T_{k}\) is a retract of \(\Omega G_{k}\). As a corollary the author reproves some of the results of [J. A. Neisendorfer, Topology 38, No. 6, 1293-1311 (1999; Zbl 0935.55008)].

MSC:

55P35 Loop spaces
55Q25 Hopf invariants
Full Text: DOI

References:

[1] David Anick, Differential algebras in topology, Research Notes in Mathematics, vol. 3, A K Peters, Ltd., Wellesley, MA, 1993. · Zbl 0770.55001
[2] David Anick and Brayton Gray, Small \? spaces related to Moore spaces, Topology 34 (1995), no. 4, 859 – 881. · Zbl 0868.55006 · doi:10.1016/0040-9383(95)00001-1
[3] F. R. Cohen and M. E. Mahowald, A remark on the self-maps of \Omega ²\?²\(^{n}\)\(^{+}\)\textonesuperior , Indiana Univ. Math. J. 30 (1981), no. 4, 583 – 588. · Zbl 0472.55005 · doi:10.1512/iumj.1981.30.30046
[4] F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979), no. 1, 121 – 168. · Zbl 0405.55018 · doi:10.2307/1971269
[5] F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no. 3, 549 – 565. · Zbl 0443.55009 · doi:10.2307/1971238
[6] F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Exponents in homotopy theory, Algebraic topology and algebraic \?-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 3 – 34. · Zbl 0715.55010
[7] Brayton Gray, Homotopy commutativity and the \?\?\? sequence, Algebraic topology (Evanston, IL, 1988) Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 181 – 188. · doi:10.1090/conm/096/1022680
[8] Brayton Gray, On the iterated suspension, Topology 27 (1988), no. 3, 301 – 310. · Zbl 0668.55005 · doi:10.1016/0040-9383(88)90011-0
[9] Brayton Gray, \?\?\? spectra and periodicity. I. Geometric constructions, Trans. Amer. Math. Soc. 340 (1993), no. 2, 595 – 616. · Zbl 0820.55005
[10] I. M. James, Reduced product spaces, Annals of Math. 62 (1955), 170-197. · Zbl 0064.41505
[11] Joseph Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc. 25 (1980), no. 232, iv+67. · Zbl 0446.55002 · doi:10.1090/memo/0232
[12] Joseph Neisendorfer, Product decompositions of the double loops on odd primary Moore spaces, Topology 38 (1999), no. 6, 1293 – 1311. · Zbl 0935.55008 · doi:10.1016/S0040-9383(98)00055-X
[13] J. A. Neisendorfer, James-Hopf invariants, Anick’s spaces, and the double loops on odd primary Moore spaces, Canad. Math. Bull. 43 (2000), 226-235. CMP 2000:11 · Zbl 0958.55014
[14] Paul Selick, Odd primary torsion in \?_{\?}(\?³), Topology 17 (1978), no. 4, 407 – 412. · Zbl 0403.55021 · doi:10.1016/0040-9383(78)90007-1
[15] Paul Selick, A decomposition of \?_{\ast }(\?^{2\?+1};\?/\?\?), Topology 20 (1981), no. 2, 175 – 177. · Zbl 0453.55006 · doi:10.1016/0040-9383(81)90036-7
[16] Paul Selick, A reformulation of the Arf invariant one mod \? problem and applications to atomic spaces, Pacific J. Math. 108 (1983), no. 2, 431 – 450. · Zbl 0563.55012
[17] S. D. Theriault, A reconstruction of Anick’s fibration, to appear in Topology.
[18] S. D. Theriault, Properties of Anick’s spaces, to appear in Trans. Amer. Math. Soc. CMP 2000:01 · Zbl 0992.55008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.