×

A new decomposition of the graph Laplacian and the binomial structure of mass-action systems. (English) Zbl 1519.05158

Summary: We provide a new decomposition of the Laplacian matrix (for labeled directed graphs with strongly connected components), involving an invertible core matrix, the vector of tree constants, and the incidence matrix of an auxiliary graph, representing an order on the vertices. Depending on the particular order, the core matrix has additional properties. Our results are graph-theoretic/algebraic in nature. As a first application, we further clarify the binomial structure of (weakly reversible) mass-action systems, arising from chemical reaction networks. Second, we extend a classical result by F. Horn and R. Jackson [Arch. Ration. Mech. Anal. 47, 81–116 (1972; doi.org/10.1007/BF00251225)] on the asymptotic stability of special steady states (complex-balanced equilibria). Here, the new decomposition of the graph Laplacian allows us to consider regions in the positive orthant with given monomial evaluation orders (and corresponding polyhedral cones in logarithmic coordinates). As it turns out, all dynamical systems are asymptotically stable that can be embedded in certain binomial differential inclusions. In particular, this holds for complex-balanced mass-action systems, and hence, we also obtain a polyhedral-geometry proof of the classical result.

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C20 Directed graphs (digraphs), tournaments
05C78 Graph labelling (graceful graphs, bandwidth, etc.)
05C92 Chemical graph theory
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
92E20 Classical flows, reactions, etc. in chemistry
34D20 Stability of solutions to ordinary differential equations
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

References:

[1] Anderson, DF, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71, 4, 1487-1508 (2011) · Zbl 1227.92013 · doi:10.1137/11082631X
[2] Anderson, D.: A short note on the Lyapunov function for complex-balanced chemical reaction networks. Unpublished (2014). CRNT_Lyapunov.pdf
[3] Belkin, M.; Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 6, 1373-1396 (2003) · Zbl 1085.68119 · doi:10.1162/089976603321780317
[4] Birch, MW, Maximum likelihood in three-way contingency tables, J. R. Stat. Soc. Ser. B, 25, 220-233 (1963) · Zbl 0121.14001
[5] Birkhoff, G., Tres observaciones sobre el algebra lineal. Universidad Nacional de Tucumán, Revista. Serie A, 5, 147-151 (1946) · Zbl 0060.07906
[6] Boros, B.; Müller, S.; Regensburger, G., Complex-balanced equilibria of generalized mass-action systems: necessary conditions for linear stability, Math. Biosci. Eng., 17, 1, 442-459 (2020) · Zbl 1478.92264 · doi:10.3934/mbe.2020024
[7] Craciun, G.: Toric differential inclusions and a proof of the global attractor conjecture. arXiv (2015). arXiv:1501.02860 [math.DS]
[8] Craciun, G., Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geom., 3, 1, 87-106 (2019) · Zbl 1412.37035 · doi:10.1137/17M1129076
[9] Craciun, G.; Dickenstein, A.; Shiu, A.; Sturmfels, B., Toric dynamical systems, J. Symb. Comput., 44, 1551-1565 (2009) · Zbl 1188.37082 · doi:10.1016/j.jsc.2008.08.006
[10] Craciun, G.; Nazarov, F.; Pantea, C., Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73, 1, 305-329 (2013) · Zbl 1277.37106 · doi:10.1137/100812355
[11] Craciun, G.; Müller, S.; Pantea, C.; Yu, P., A generalization of Birch’s theorem and vertex-balanced steady states for generalized mass-action systems, Math. Biosci. Eng., 16, 6, 8243-8267 (2019) · Zbl 1478.92073 · doi:10.3934/mbe.2019417
[12] Feinberg, M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187-194 (1972/73)
[13] Feinberg, M.; Horn, FJM, Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces, Arch. Ration. Mech. Anal., 66, 1, 83-97 (1977) · Zbl 0384.70026 · doi:10.1007/BF00250853
[14] Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies (1993), Princeton: Princeton University Press, Princeton · Zbl 0813.14039 · doi:10.1515/9781400882526
[15] Gopalkrishnan, M.: On the Lyapunov function for complex-balanced mass-action systems. arXiv (2014). arXiv:1312.3043 [math.DS]
[16] Gopalkrishnan, M.; Miller, E.; Shiu, A., A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13, 758-797 (2014) · Zbl 1301.34063 · doi:10.1137/130928170
[17] Gunawardena, J., A linear framework for time-scale separation in nonlinear biochemical systems, PLoS ONE, 7, 5 (2012) · doi:10.1371/journal.pone.0036321
[18] Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal., 49, 172-186 (1972/73)
[19] Horn, F.: The dynamics of open reaction systems. In: Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry (Proceedings of SIAM-AMS Symposium in Applied Mathematics, New York, 1974), pp. 125-137. SIAM-AMS Proceedings, Vol. VIII. American Mathematical Society, Providence (1974)
[20] Horn, F.; Jackson, R., General mass action kinetics, Arch. Ration. Mech. Anal., 47, 81-116 (1972) · doi:10.1007/BF00251225
[21] Kandori, M.; Mailath, GJ; Rob, R., Learning, mutation, and long run equilibria in games, Econometrica, 61, 1, 29-56 (1993) · Zbl 0776.90095 · doi:10.2307/2951777
[22] Merris, R., Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197/198, 143-176 (1994) · Zbl 0802.05053 · doi:10.1016/0024-3795(94)90486-3
[23] Mirzaev, I.; Gunawardena, J., Laplacian dynamics on general graphs, Bull. Math. Biol., 75, 11, 2118-2149 (2013) · Zbl 1310.92023 · doi:10.1007/s11538-013-9884-8
[24] Mohar, B.: The Laplacian spectrum of graphs. In: Graph Theory, Combinatorics, and Applications, vol. 2 (Kalamazoo, 1988). pp. 871-898. Wiley, New York (1991) · Zbl 0840.05059
[25] Müller, S.: Sufficient conditions for linear stability of complex-balanced equilibria in generalized mass-action systems. Preprint at https://arxiv.org/abs/2212.11039 (2022)
[26] Müller, S.; Regensburger, G., Generalized mass action systems: complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM J. Appl. Math., 72, 6, 1926-1947 (2012) · Zbl 1261.92063 · doi:10.1137/110847056
[27] Müller, S., Regensburger, G.: Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.H. (eds) Computer Algebra in Scientific Computing. Proceedings of the 16th International Workshop (CASC 2014), Lecture Notes in Computer Science, vol. 8660, pp. 302-323. Springer, Berlin (2014) · Zbl 1421.92043
[28] Müller, S.; Feliu, E.; Regensburger, G.; Conradi, C.; Shiu, A.; Dickenstein, A., Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16, 1, 69-97 (2016) · Zbl 1382.92272 · doi:10.1007/s10208-014-9239-3
[29] Müller, S.; Hofbauer, J.; Regensburger, G., On the bijectivity of families of exponential/generalized polynomial maps, SIAM J. Appl. Algebra Geom., 3, 3, 412-438 (2019) · Zbl 1419.26001 · doi:10.1137/18M1178153
[30] Pachter, L., Sturmfels, B.: Statistics. In: Algebraic Statistics for Computational Biology, pp. 3-42. Cambridge University Press, New York (2005) · Zbl 1383.62283
[31] Shuman, DI; Narang, SK; Frossard, P.; Ortega, A.; Vandergheynst, P., The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., 30, 3, 83-98 (2013) · doi:10.1109/MSP.2012.2235192
[32] Siegel, D.; Johnston, MD, A stratum approach to global stability of complex balanced systems, Dyn. Syst., 26, 2, 125-146 (2011) · Zbl 1218.80016 · doi:10.1080/14689367.2010.545812
[33] Sontag, ED, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Autom. Control, 46, 7, 1028-1047 (2001) · Zbl 1049.92020 · doi:10.1109/9.935056
[34] Tutte, WT, The dissection of equilateral triangles into equilateral triangles, Proc. Camb. Philos. Soc., 44, 463-482 (1948) · Zbl 0030.40903 · doi:10.1017/S030500410002449X
[35] von Neumann, J.: A certain zero-sum two-person game equivalent to the optimal assignment problem. In: Contributions to the Theory of Games, Annals of Mathematics Studies, vol. 2, No. 28, pp. 5-12. Princeton University Press, Princeton (1953) · Zbl 0050.14105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.