×

On the bijectivity of families of exponential/generalized polynomial maps. (English) Zbl 1419.26001

Summary: We start from a parametrized system of \(d\) generalized polynomial equations (with real exponents) for \(d\) positive variables, involving \(n\) generalized monomials with \(n\) positive parameters. Existence and uniqueness of a solution for all parameters and for all right-hand sides is equivalent to the bijectivity of (every element of) a family of generalized polynomial/exponential maps. We characterize the bijectivity of the family of exponential maps in terms of two linear subspaces arising from the coefficient and exponent matrices, respectively. In particular, we obtain conditions in terms of sign vectors of the two subspaces and a nondegeneracy condition involving the exponent subspace itself. Thereby, all criteria can be checked effectively. Moreover, we characterize when the existence of a unique solution is robust with respect to small perturbations of the exponents and/or the coefficients. In particular, we obtain conditions in terms of sign vectors of the linear subspaces or, alternatively, in terms of maximal minors of the coefficient and exponent matrices. Finally, we present applications to chemical reaction networks with (generalized) mass-action kinetics.

MSC:

26C10 Real polynomials: location of zeros
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
52C40 Oriented matroids in discrete geometry

References:

[1] A. Albouy and Y. Fu, Some remarks about Descartes’ rule of signs, Elem. Math., 69 (2014), pp. 186-194. · Zbl 1342.12002
[2] C. P. P. Arceo, E. C. Jose, A. R. Lao, and E. R. Mendoza, Reaction networks and kinetics of biochemical systems, Math. Biosci., 283 (2017), pp. 13-29. · Zbl 1366.92054
[3] C. P. P. Arceo, E. C. Jose, A. Marin-Sanguino, and E. R. Mendoza, Chemical reaction network approaches to biochemical systems theory, Math. Biosci., 269 (2015), pp. 135-152. · Zbl 1351.92016
[4] A. Bachem and W. Kern, Linear Programming Duality, Springer-Verlag, Berlin, 1992. · Zbl 0757.90050
[5] S. Banach and S. Mazur, Über mehrdeutige stetige Abbildungen, Stud. Math., 5 (1934), pp. 174-178. · JFM 60.1227.03
[6] M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 807-869, https://doi.org/10.1137/15M1034441. · Zbl 1342.80011
[7] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented Matroids, 2nd ed., Encyclopedia Math. Appl. 46, Cambridge University Press, Cambridge, 1999. · Zbl 0944.52006
[8] B. Boros and J. Hofbauer, Planar S-systems: Permanence, J. Differential Equations, 266 (2019), pp. 3787-3817. · Zbl 1430.34063
[9] B. Boros, J. Hofbauer, and S. Müller, On global stability of the Lotka reactions with generalized mass-action kinetics, Acta Appl. Math., 151 (2017), pp. 53-80. · Zbl 1398.34082
[10] B. Boros, J. Hofbauer, S. Müller, and G. Regensburger, The center problem for the Lotka reactions with generalized mass-action kinetics, Qual. Theory Dyn. Syst., 17 (2018), pp. 403-410. · Zbl 1402.34033
[11] B. Boros, J. Hofbauer, S. Müller, and G. Regensburger, Planar S-systems: Global stability and the center problem, Discrete Contin. Dyn. Syst. Ser. A, 2 (2019), pp. 707-727. · Zbl 1421.34038
[12] S. Chaiken, Oriented matroid pairs, theory and an electric application, in Matroid Theory (Seattle, WA, 1995), Contemp. Math. 197, Amer. Math. Soc., Providence, RI, 1996, pp. 313-331. · Zbl 0866.05016
[13] G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels, Toric dynamical systems, J. Symbolic Comput., 44 (2009), pp. 1551-1565. · Zbl 1188.37082
[14] G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: I. The injectivity property, SIAM J. Appl. Math., 65 (2005), pp. 1526-1546. · Zbl 1094.80005
[15] G. Craciun, L. Garcia-Puente, and F. Sottile, Some geometrical aspects of control points for toric patches, in Mathematical Methods for Curves and Surfaces, M. D\aehlen, M. S. Floater, T. Lyche, J.-L. Merrien, K. Morken, and L. L. Schumaker, eds., Lecture Notes in Comput. Sci. 5862, Springer, Heidelberg, 2010, pp. 111-135. · Zbl 1274.65033
[16] G. Craciun, S. Müller, C. Pantea, and P. Y. Yu, A Generalization of Birch’s Theorem and Vertex-Balanced Steady States for Generalized Mass-Action Systems, preprint, https://arxiv.org/abs/1802.06919, 2018. · Zbl 1478.92073
[17] J. A. De Loera, J. Rambau, and F. Santos, Triangulations. Structures for Algorithms and Applications, Springer, Berlin, 2010. · Zbl 1207.52002
[18] M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal., 49 (1972/73), pp. 187-194.
[19] E. Feliu and C. Wiuf, Preclusion of switch behavior in networks with mass-action kinetics, Appl. Math. Comput., 219 (2012), pp. 1449-1467. · Zbl 1417.37298
[20] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, NJ, 1993. · Zbl 0813.14039
[21] I. M. Glazman and J. I. Ljubič, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form, The M.I.T. Press, Cambridge, MA, 1974. · Zbl 0332.15001
[22] G. Gnacadja, Univalent positive polynomial maps and the equilibrium state of chemical networks of reversible binding reactions, Adv. in Appl. Math., 43 (2009), pp. 394-414. · Zbl 1173.92038
[23] G. Gnacadja, A Jacobian criterion for the simultaneous injectivity on positive variables of linearly parameterized polynomial maps, Linear Algebra Appl., 437 (2012), pp. 612-622. · Zbl 1244.26021
[24] M. Gopalkrishnan, E. Miller, and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 758-797, https://doi.org/10.1137/130928170. · Zbl 1301.34063
[25] W. B. Gordon, On the diffeomorphisms of Euclidean space, Amer. Math. Monthly, 79 (1972), pp. 755-759. · Zbl 0263.57015
[26] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. Fr., 34 (1906), pp. 71-84. · JFM 37.0672.02
[27] F. Horn, Necessary and sufficient conditions for complex balancing in chemical kinetics, Arch. Rational Mech. Anal., 49 (1972/73), pp. 172-186.
[28] F. Horn and R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal., 47 (1972), pp. 81-116.
[29] G. J. O. Jameson, Counting zeros of generalised polynomials: Descartes’ rule of signs and Laguerre’s extensions, Math. Gaz., 90 (2006), pp. 223-234.
[30] M. D. Johnston, Translated chemical reaction networks, Bull. Math. Biol., 76 (2014), pp. 1081-1116. · Zbl 1297.92096
[31] M. D. Johnston, A computational approach to steady state correspondence of regular and generalized mass action systems, Bull. Math. Biol., 77 (2015), pp. 1065-1100. · Zbl 1327.80016
[32] M. D. Johnston and E. Burton, Computing weakly reversible deficiency zero network translations using elementary flux modes, Bull. Math. Biol., 81 (2019), pp. 1613-1644. · Zbl 1415.92085
[33] M. D. Johnston, S. Müller, and C. Pantea, A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems, Bull. Math. Biol., 81 (2019), pp. 1143-1172. · Zbl 1415.92086
[34] A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monogr. 88, American Mathematical Society, Providence, RI, 1991. · Zbl 0728.12002
[35] E. N. Laguerre, Mémoire sur la théorie des équations numériques, J. Math. Pures Appl. (3), 9 (1883), pp. 99-146. · JFM 15.0063.02
[36] G. J. Minty, A “from scratch” proof of a theorem of Rockafellar and Fulkerson, Math. Program., 7 (1974), pp. 368-375. · Zbl 0305.15008
[37] S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu, and A. Dickenstein, Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16 (2016), pp. 69-97. · Zbl 1382.92272
[38] S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM J. Appl. Math., 72 (2012), pp. 1926-1947, https://doi.org/10.1137/110847056. · Zbl 1261.92063
[39] S. Müller and G. Regensburger, Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents, in Computer Algebra in Scientific Computing. Proceedings of the 16th International Workshop (CASC 2014), V. P. Gerdt, W. Koepf, E. W. Mayr, and E. H. Vorozhtsov, eds., Lecture Notes in Comput. Sci. 8660, Springer, Cham, 2014, pp. 302-323. · Zbl 1421.92043
[40] S. Müller and G. Regensburger, Elementary vectors and conformal sums in polyhedral geometry and their relevance for metabolic pathway analysis, Front. Genet., 7 (2016), 90.
[41] L. Pachter and B. Sturmfels, Statistics, in Algebraic Statistics for Computational Biology, Cambridge Univ. Press, New York, 2005, pp. 3-42. · Zbl 1383.62283
[42] J. Richter-Gebert and G. M. Ziegler, Oriented matroids, in Handbook of Discrete and Computational Geometry, CRC, Boca Raton, FL, 1997, pp. 111-132. · Zbl 0902.05015
[43] R. T. Rockafellar, The elementary vectors of a subspace of \(R^N \), in Combinatorial Mathematics and Its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, NC., 1967), Univ. North Carolina Press, Chapel Hill, NC, 1969, pp. 104-127. · Zbl 0229.90019
[44] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[45] M. A. Savageau, Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol., 25 (1969), pp. 365-369.
[46] F. Sottile, Real Solutions to Equations from Geometry, American Mathematical Society, Providence, RI, 2011. · Zbl 1233.14001
[47] D. J. Struik, ed., A Source Book in Mathematics, 1200-1800, Source Books in the History of the Sciences, Harvard University Press, Cambridge, MA, 1969, https://archive.org/details/B-001-001-112. · Zbl 0205.29202
[48] B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Regional Conf. Ser. Math. 97, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2002. · Zbl 1101.13040
[49] D. A. S. J. Talabis, C. P. P. Arceo, and E. R. Mendoza, Positive equilibria of a class of power-law kinetics, J. Math. Chem., 56 (2018), pp. 358-394. · Zbl 1385.92063
[50] E. Tonello and M. D. Johnston, Network translation and steady-state properties of chemical reaction systems, Bull. Math. Biol., 80 (2018), pp. 2306-2337. · Zbl 1400.92217
[51] E. O. Voit, Biochemical systems theory: A review, ISRN Biomath., 2013 (2013), 897658. · Zbl 1268.92045
[52] G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995. · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.