×

Numerical modeling of acoustic processes in gradient media using the grid-characteristic method. (English. Russian original) Zbl 1517.74052

Dokl. Math. 106, No. 3, 449-453 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 507, 51-56 (2022).
Summary: In this paper, we consider the problem of seismic wave propagation in gradient geological media. Their dynamic behavior is described using the acoustic approximation and the numerical integration of the initial-boundary value problem for the acoustic wave equation with spatially variable mechanical parameters. A grid-characteristic numerical method is developed that explicitly takes into account the gradient of the medium. The numerical solutions are compared with results obtained using a piecewise constant model of the medium in the one-dimensional case.

MSC:

74J10 Bulk waves in solid mechanics
74L05 Geophysical solid mechanics
74S99 Numerical and other methods in solid mechanics
86A15 Seismology (including tsunami modeling), earthquakes
Full Text: DOI

References:

[1] Young, C.; Shragge, J.; Schultz, W.; Haines, S.; Oren, C.; Simmons, J.; Collett, T. S., Advanced distributed acoustic sensing vertical seismic profile imaging of an Alaska North Slope gas hydrate field, Energy Fuels, 36, 3481-3495 (2022) · doi:10.1021/acs.energyfuels.1c04102
[2] Chai, X.; Tang, G.; Wang, F.; Gu, H.; Wang, X., Q-compensated acoustic impedance inversion of attenuated seismic data: Numerical and field-data experiments, Geophysics R, 83, 553-567 (2018) · doi:10.1190/geo2017-0499.1
[3] Wang, E.; Ba, J.; Liu, Y., Time-space-domain implicit finite-difference methods for modeling acoustic wave equations: Time-space-domain implicit FD, Geophysics T, 83, 175-193 (2018) · doi:10.1190/geo2017-0546.1
[4] Amini, N.; Shin, C.; Lee, J., Second-order implicit finite-difference schemes for the acoustic wave equation in the time-space domain, Geophysics T, 86, 421-437 (2021) · doi:10.1190/geo2020-0684.1
[5] F. Denner, F. Evrard, and B. G. van Wachem, “Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds,” J. Comput. Phys. 409, 109348 (2020). · Zbl 1435.76043
[6] Diwan, G. C.; Mohamed, M. S., Pollution studies for high order isogeometric analysis and finite element for acoustic problems, Comput. Methods Appl. Mech. Eng., 350, 701-718 (2019) · Zbl 1441.65097 · doi:10.1016/j.cma.2019.03.031
[7] Adjerid, S.; Moon, K., An immersed discontinuous Galerkin method for acoustic wave propagation in inhomogeneous media, SIAM J. Sci. Comput. A, 41, 139-162 (2019) · Zbl 1407.65169 · doi:10.1137/16M1090934
[8] Favorskaya, A. V.; Petrov, I. B., Numerical modeling of dynamic wave effects in rock masses, Dokl. Math., 95, 287-290 (2017) · doi:10.1134/S1064562417030139
[9] Petrov, I. B.; Golubev, V. I.; Petrukhin, V. Y.; Nikitin, I. S., Simulation of seismic waves in anisotropic media, Dokl. Math., 103, 146-150 (2021) · Zbl 1528.65050 · doi:10.1134/S1064562421030145
[10] Nikitin, I. S.; Golubev, V. I., Higher order schemes for problems of dynamics of layered media with nonlinear contact conditions, Smart Innovation Syst. Technol., 274, 273-287 (2022) · doi:10.1007/978-981-16-8926-0_19
[11] V. Golubev, A. Shevchenko, N. Khokhlov, I. Petrov, and M. Malovichko, “Compact grid-characteristic scheme for the acoustic system with the piece-wise constant coefficients,” Int. J. Appl. Mech. 14 (2), 2250002 (2022). doi:10.1142/S1758825122500028
[12] V. I. Golubev, A. V. Shevchenko, N. I. Khokhlov, and I. S. Nikitin, “Numerical investigation of compact grid-characteristic schemes for acoustic problems,” J. Phys.: Conf. Ser. 1902 (1), 012110 (2021).
[13] Kuvshinov, B. N.; Mulder, W. A., The exact solution of the time-harmonic wave equation for a linear velocity profile, Geophys. J. Int., 167, 659-662 (2006) · doi:10.1111/j.1365-246X.2006.03194.x
[14] Pekeris, C. L., Theory of propagation of sound in a half-space of variable sound velocity under conditions of formation of a shadow zone, J. Acoust. Soc. Am., 18, 295-315 (1946) · Zbl 0063.06149 · doi:10.1121/1.1916366
[15] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1987), Oxford: Butterworth-Heinemann, Oxford · Zbl 0655.76001
[16] L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media (Nauka, Moscow, 1989; Springer-Verlag Berlin, 1990).
[17] N. I. Khokhlov, Doctoral Dissertation in Mathematics and Physics (Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, 2022).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.