×

Approximation of boundary condition in higher order grid-characteristic schemes. (English. Russian original) Zbl 07820595

Dokl. Math. 108, No. 3, 466-471 (2023); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 514, No. 1, 52-58 (2023).
Summary: In this paper, we consider the problem of constructing a numerical solution to the system of equations of an acoustic medium in a fixed domain with a boundary. Physically, it corresponds to seismic wave propagation in geological media during seismic exploration of hydrocarbon deposits. The system of first-order partial differential equations under consideration is hyperbolic. Its numerical solution is constructed by applying a grid-characteristic method on an extended spatial stencil. This approach yields a higher order approximation scheme at internal points of the computational domain, but requires a careful construction of the numerical solution near the boundaries. In this paper, an approach that preserves the increased approximation order up to the boundary is proposed. Verification numerical simulations were carried out.

MSC:

74S99 Numerical and other methods in solid mechanics
74L05 Geophysical solid mechanics
74J10 Bulk waves in solid mechanics
86A15 Seismology (including tsunami modeling), earthquakes
Full Text: DOI

References:

[1] Krautkrämer, J.; Krautkrämer, H., Ultrasonic Testing of Materials, 1990, Berlin: Springer-Verlag, Berlin · doi:10.1007/978-3-662-10680-8
[2] Ba, J.; Du, Q.; Carcione, J.; Zhang, H.; Müller, T. M., Seismic Exploration of Hydrocarbons in Heterogeneous Reservoirs: New Theories, Methods and Applications, 2015, Amsterdam: Elsevier, Amsterdam
[3] Moczo, P.; Kristek, J.; Kristekova, M.; Valovčan, J.; Galis, M.; Gregor, D., Material interface in the finite-difference modeling: A fundamental view, Bull. Seismol. Soc. Am., 113, 281-296, 2022 · doi:10.1785/0120220133
[4] K. Duru, L. Rannabauer, A.-A. Gabriel, O. Ling, H. Igel, and M. Bader, “A stable discontinuous Galerkin method for linear elastodynamics in 3D geometrically complex elastic solids using physics based numerical fluxes,” Comput. Methods Appl. Mech. Eng. 389, 114386 (2022). · Zbl 1507.74064
[5] Vogl, C.; Leveque, R., A high-resolution finite volume seismic model to generate seafloor deformation for tsunami modeling, J. Sci. Comput., 73, 1204-1215, 2017 · Zbl 1395.86004 · doi:10.1007/s10915-017-0459-y
[6] Magomedov, K. M.; Kholodov, A. S., Grid-Characteristic Numerical Methods, 2018, Moscow: Nauka, Moscow
[7] Massau, J., Memoire sur l’integration graphique aux derives partielles, 1899 · JFM 30.0312.01
[8] Petrov, I. B.; Golubev, V. I.; Ankipovich, Yu. S.; Favorskaya, A. V., Numerical modeling of acoustic processes in gradient media using the grid-characteristic method, Dokl. Math., 106, 449-453, 2022 · Zbl 1517.74052 · doi:10.1134/S1064562422700090
[9] Khokhlov, N. I.; Favorskaya, A.; Furgailo, V., Grid-characteristic method on overlapping curvilinear meshes for modeling elastic waves scattering on geological fractures, Minerals, 12, 1597, 2022 · doi:10.3390/min12121597
[10] Petrov, I. B.; Golubev, V. I.; Petrukhin, V. Yu.; Nikitin, I. S., Simulation of seismic waves in anisotropic media, Dokl. Math., 103, 146-150, 2021 · Zbl 1528.65050 · doi:10.1134/S1064562421030145
[11] Petrov, I. B.; Golubev, V. I.; Shevchenko, A. V., Problem of acoustic diagnostics of a damaged zone, Dokl. Math., 101, 250-253, 2020 · Zbl 1477.74073 · doi:10.1134/S1064562420020180
[12] Golubev, V. I.; Nikitin, I. S.; Burago, N. G.; Golubeva, Yu. A., Explicit-implicit schemes for calculating the dynamics of elastoviscoplastic media with a short relaxation time, Differ. Equations, 59, 822-832, 2023 · Zbl 07734401 · doi:10.1134/S0012266123060101
[13] D. Konovalov, A. Vershinin, K. Zingerman, and V. Levin, “The implementation of spectral element method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes,” Model. Simul. Eng. 1, 1797561 (2017).
[14] Dovgilovich, L.; Sofronov, I., High-accuracy finite-difference schemes for solving elastodynamic problems in curvilinear coordinates within multiblock approach, Appl. Numer. Math., 93, 176-194, 2015 · Zbl 1325.74157 · doi:10.1016/j.apnum.2014.06.005
[15] Goloviznin, V. M.; Solov’ev, A. V., Dispersive and Dissipative Characteristics of Difference Schemes for Hyperbolic Partial Differential Equations, 2018, Moscow: MAKS Press, Moscow
[16] Goloviznin, V. M.; Solovjev, A. V., Dissipative and dispersive properties of finite difference schemes for the linear transport equation on a 4 × 3 metatemplate, Math. Models Comput. Simul., 14, 28-37, 2022 · doi:10.1134/S2070048222010124
[17] Rusanov, V. V., Third-order accurate shock-capturing schemes for computing discontinuous solutions, Dokl. Akad. Nauk SSSR, 180, 1303-1305, 1968 · Zbl 0179.22202
[18] H. Nishikawa and B. Van Leer, “Towards high-order boundary procedures for finite-volume and finite-difference schemes,” (2023). doi:10.2514/6.2023-1605
[19] L. I. Sedov, Course in Continuum Mechanics (Nauka, Moscow, 1970; Wolters-Noordhoff, Groningen, 1971), Vol. 1.
[20] Kholodov, A. S.; Kholodov, Y. A., Monotonicity criteria for difference schemes designed for hyperbolic equations, Comput. Math. Math. Phys., 46, 1560-1588, 2006 · Zbl 07811665 · doi:10.1134/S0965542506090089
[21] Kholodov, A. S., The construction of difference schemes of increased order of accuracy for equations of hyperbolic type, USSR Comput. Math. Math. Phys., 20, 234-253, 1980 · Zbl 0477.65065 · doi:10.1016/0041-5553(80)90017-8
[22] Shevchenko, A. V.; Golubev, V. I., Boundary and contact conditions of higher order of accuracy for grid-characteristic schemes in acoustic problems, Comput. Math. Math. Phys., 63, 1760-1772, 2023 · Zbl 07786671 · doi:10.1134/S096554252310010X
[23] Golubev, V. I.; Shevchenko, A. V.; Petrov, I. B., Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting, Comput. Res. Model., 14, e899-e910, 2022 · doi:10.20537/2076-7633-2022-14-4-899-910
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.