×

Pollution studies for high order isogeometric analysis and finite element for acoustic problems. (English) Zbl 1441.65097

Summary: It is well known that Galerkin finite element methods suffer from pollution error when solving wave problems. To reduce the pollution impact on the solution different approaches were proposed to enrich the finite element method with wave-like functions so that the exact wavenumber is incorporated into the finite element approximation space. Solving wave problems with isogeometric analysis was also investigated in the literature where the superior behaviour of isogeometric analysis due to higher continuity in the underlying basis has been studied. Recently, a plane wave enriched isogeometric analysis was introduced for acoustic problems. However, it remains unquantified the impact of these different approaches on the pollution or how they perform compared to each other. In this work, we show that isogeometric analysis outperforms finite element method in dealing with pollution. We observe similar behaviour when both the methods are enriched with plane waves. Using higher order polynomials with fewer enrichment functions seems to improve the pollution compared to lower order polynomials with more functions. However, the latter still leads to smaller errors using similar number of degrees of freedom. In conclusion, we propose that partition of unity isogeometric analysis can be an efficient tool for wave problems as enrichment eliminates the need for domain re-meshing at higher frequencies and also due to its ability to capture the exact geometry even on coarse meshes as well as its improved pollution behaviour.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number Part I: The \(h\)-version of the FEM, Comput. Math. Appl., 30, 9, 9-37 (1995) · Zbl 0838.65108
[2] Ihlenburg, F., Finite Element Analysis of Acoustic Scattering, volume 132 (2006), Springer Science & Business Media
[3] Ainsworth, M., Discrete dispersion relation for \(h p\)-version finite element approximation at high wave number, SIAM J. Numer. Anal., 42, 2, 553-575 (2004) · Zbl 1074.65112
[4] Ainsworth, M.; Monk, P.; Muniz, W., Dispersive and dissipative properties of discontinuous galerkin finite element methods for the second-order wave equation, J. Sci. Comput., 27, 1-3, 5-40 (2006) · Zbl 1102.76032
[5] Melenk, J.; Sauter, S., Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79, 272, 1871-1914 (2010) · Zbl 1205.65301
[6] Melenk, J. M.; Sauter, S., Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49, 3, 1210-1243 (2011) · Zbl 1229.35038
[7] Ihlenburg, F.; Babuska, I., Finite element solution of the Helmholtz equation with high wave number part II: the hp version of the FEM, SIAM J. Numer. Anal., 34, 1, 315-358 (1997) · Zbl 0884.65104
[8] Melenk, J. M.; Babuška, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[9] Babuška, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[10] Laghrouche, O.; Bettess, P.; Astley, R. J., Modelling of short wave diffraction problems using approximating systems of plane waves, Internat. J. Numer. Methods Engrg., 54, 1501-1533 (2002) · Zbl 1098.76574
[11] Laghrouche, O.; Bettess, P.; Perrey-Debain, E.; Trevelyan, J., Plane wave basis finite-elements for wave scattering in three dimensions, Int. J. Numer. Methods Biomed. Eng., 19, 9, 715-723 (2003) · Zbl 1031.65132
[12] El Kacimi, A.; Laghrouche, O., Numerical modelling of elastic wave scattering in frequency domain by the partition of unity finite element method, Internat. J. Numer. Methods Engrg., 77, 12, 1646-1669 (2009) · Zbl 1158.74485
[13] Strouboulis, T.; Babuška, I.; Hidajat, R., The generalized finite element method for Helmholtz equation: Theory, computation, and open problems, Comput. Methods Appl. Mech. Engrg., 195, 4711-4731 (2006) · Zbl 1120.76044
[14] Strouboulis, T.; Hidajat, R., Partition of unity method for Helmholtz equation: q-convergence for plane-wave and wave-band local bases, Appl. Math., 51, 2, 181-204 (2006) · Zbl 1164.65505
[15] Laghrouche, O.; Mohamed, M. S., Locally enriched finite elements for the Helmholtz equation in two dimensions, Comput. Struct., 88, 1469-1473 (2010)
[16] Mohamed, M. S.; El-Kacimi, A.; Laghrouche, O., Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems, Comput. Struct., 88, 1484-1491 (2010)
[17] Banerjee, S.; Sukumar, N., Exact integration scheme for planewave-enriched partition of unity finite element method to solve the Helmholtz problem, Comput. Methods Appl. Mech. Engrg. (2017) · Zbl 1439.78016
[18] Strouboulis, T.; Hidajat, R.; Babuška, I., The generalized finite element method for Helmholtz equation Part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment, Comput. Methods Appl. Mech. Engrg., 197, 364-380 (2008) · Zbl 1169.76397
[19] Farhat, C.; Harari, I.; Hetmaniuk, U., A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Comput. Methods Appl. Mech. Engrg., 192, 11, 1389-1419 (2003) · Zbl 1027.76028
[20] Tezaur, R.; Zhang, L.; Farhat, C., A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems, Comput. Methods Appl. Mech. Engrg., 197, 19, 1680-1698 (2008) · Zbl 1194.74476
[21] Tezaur, R.; Kalashnikova, I.; Farhat, C., The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber, Comput. Methods Appl. Mech. Engrg., 268, 126-140 (2014) · Zbl 1295.76030
[22] Huttunen, T.; Malinen, M.; Monk, P., Solving Maxwell’s equations using the ultra weak variational formulation, J. Comput. Phys., 223, 2, 731-758 (2007) · Zbl 1117.78011
[23] Luostari, T.; Huttunen, T.; Monk, P., Improvements for the ultra weak variational formulation, Internat. J. Numer. Methods Engrg., 94, 6, 598-624 (2013) · Zbl 1352.65528
[24] Luostari, T.; Huttunen, T.; Monk, P., The ultra weak variational formulation of thin clamped plate problems, J. Comput. Phys., 260, 85-106 (2014) · Zbl 1349.74330
[25] Nguyen, N. C.; Peraire, J.; Reitich, F.; Cockburn, B., A phase-based hybridizable discontinuous Galerkin method for the numerical solution of the Helmholtz equation, J. Comput. Phys., 290, 318-335 (2015) · Zbl 1349.78071
[26] Li, H.; Ladevèze, P.; Riou, H., Hybrid Finite Element Method and Variational Theory of Complex Rays for Helmholtz Problems, J. Comput. Acoust., Article 1650015 pp. (2016) · Zbl 1360.74138
[27] Li, H.; Ladeveze, P.; Riou, H., Extended variational theory of complex rays in heterogeneous Helmholtz problem, Comput. Mech., 1-10 (2017)
[28] Hiptmair, R.; Moiola, A.; Perugia, I., A survey of Trefftz methods for the Helmholtz equation, (Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations (2016), Springer), 237-279 · Zbl 1357.65282
[29] Dinachandra, M.; Raju, S., Plane wave enriched Partition of Unity Isogeometric Analysis (PUIGA) for 2D-Helmholtz problems, Comput. Methods Appl. Mech. Engrg., 335, 380-402 (2018) · Zbl 1440.74389
[30] Mohamed, M. S.; Laghrouche, O.; Trevelyan, J., A \(q\)-adaptive partition of unity finite element method for the solution of the 2-D Helmholtz equation, (IOP Conference Series: Materials Science and Engineering, vol. 10 (2010), IOP Publishing), Article 012148 pp.
[31] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[32] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 1, 3-37 (2008) · Zbl 1169.74015
[33] Wang, C.; Wu, M. C. H.; Xu, F.; Hsu, M. C.; Bazilevs, Y., Modeling of a hydraulic arresting gear using fluid – structure interaction and isogeometric analysis, Comput. & Fluids, 142, 3-14 (2017) · Zbl 1390.76013
[34] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 17, 1143-1152 (2010) · Zbl 1227.78026
[35] Buffa, A.; Vázquez, R., Isogeometric analysis for electromagnetic scattering problems, (Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), 2014 International Conference on (2014), IEEE), 1-3
[36] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41, 5257-5296 (2006) · Zbl 1119.74024
[37] Cazzani, A.; Malagù, M.; Turco, E.; Stochino, F., Constitutive models for strongly curved beams in the frame of isogeometric analysis, Math. Mech. Solids, 21, 2, 182-209 (2016) · Zbl 1333.74051
[38] T. Khajah, X. Antoine, S. Bordas, Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems, arXiv preprint arXiv:1610.01694; T. Khajah, X. Antoine, S. Bordas, Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems, arXiv preprint arXiv:1610.01694
[39] De Luycker, E.; Benson, D. J.; Belytschko, T.; Bazilevs, Y.; Hsu, M. C., X-FEM in isogeometric analysis for linear fracture mechanics, Internat. J. Numer. Methods Engrg., 87, 6, 541-565 (2011) · Zbl 1242.74105
[40] Ghorashi, S. Sh; Valizadeh, N.; Mohammadi, S.; Rabczuk, T., T-spline based XIGA for fracture analysis of orthotropic media, Comput. Struct., 147, 138-146 (2015)
[41] Nguyen, V. P.; Anitescu, C.; Bordas, S.; Rabczuk, T., Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015) · Zbl 1540.65492
[42] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Engrg., 259, 93-102 (2013) · Zbl 1286.65176
[43] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 284, 762-780 (2015) · Zbl 1425.65202
[44] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[45] Coox, L.; Deckers, E.; Vandepitte, D.; Desmet, W., A performance study of NURBS-based isogeometric analysis for interior two-dimensional time-harmonic acoustics, Comput. Methods Appl. Mech. Engrg., 305, 441-467 (2016) · Zbl 1423.76221
[46] Diwan, G. C.; Mohamed, MS.; Seaid, M.; Trevelyan, J.; Laghrouche, O., Mixed enrichment for the finite element method in heterogeneous media, Internat. J. Numer. Methods Engrg., 101, 54-78 (2015) · Zbl 1352.74344
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.