×

Shadow of Kottler black hole in the presence of plasma for a co-moving observer. (English) Zbl 1516.83033

Summary: In this paper, we discussed the shadow of a static, spherically symmetric black hole geometry in presence of a positive cosmological constant \(\Lambda > 0\). We analysed the black hole shadow both in absence and presence of plasma. Then we study the black hole shadow from the point of view of a comoving observer. We display the plots for the angular shadow size as measured by a comoving observer. The effects of the cosmological constant \(\Lambda\) and plasma parameter \(k\) on the angular size of the black hole shadow have been investigated in detail. Finally, by using the observed angular size of \(\mathrm{M}87^\ast\) and Sgr \(\mathrm{A}^\ast\) black hole, we constrain the value of the plasma parameter \(k\) with a specific observational value of the cosmological constant \(\Lambda\) (or the Hubble constant \(H_0\)).

MSC:

83C57 Black holes
78A45 Diffraction, scattering
82D10 Statistical mechanics of plasmas
93B53 Observers
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83B05 Observational and experimental questions in relativity and gravitational theory

Software:

BH01

References:

[1] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[2] Event Horizon Telescope Collaboration, First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. Lett., 875, L1 (2019) · doi:10.3847/2041-8213/ab0ec7
[3] Event Horizon Telescope Collaboration, First M87 event horizon telescope results. vii. polarization of the ring, Astrophys. J. Lett., 910, L12 (2021) · doi:10.3847/2041-8213/abe71d
[4] Synge, J. L., The escape of photons from gravitationally intense stars, Mon. Not. R. Astron. Soc., 131, 463-6 (1966) · doi:10.1093/mnras/131.3.463
[5] Bardeen, J. M., Timelike and null geodesics in the Kerr metric Black Holes (Les astres occlus), pp 215-39 (1973)
[6] Grenzebach, A.; Perlick, V.; Lämmerzahl, C., Photon regions and shadows of Kerr-Newman-NUT black holes with a cosmological constant, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.124004
[7] Perlick, V.; Tsupko, O. Y., Light propagation in a plasma on Kerr spacetime: Separation of the Hamilton-Jacobi equation and calculation of the shadow, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.104003
[8] de Vries, A., The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set A_4, Class. Quantum Grav., 17, 123 (2000) · Zbl 0940.83018 · doi:10.1088/0264-9381/17/1/309
[9] Abdujabbarov, A.; Amir, M.; Ahmedov, B.; Ghosh, S. G., Shadow of rotating regular black holes, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.104004
[10] Amir, M.; Ghosh, S. G., Shapes of rotating nonsingular black hole shadows, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.024054
[11] Wang, M.; Chen, S.; Jing, J., Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole, J. Cosmol. Astropart. Phys., JCAP10(2017)051 (2017) · Zbl 1515.83177 · doi:10.1088/1475-7516/2017/10/051
[12] Övgün, A.; Sakallï, I.; Saavedraa, J., Shadow cast and deflection angle of Kerr-Newman-Kasuya spacetime, J. Cosmol. Astropart. Phys., JCAP10(2018)041 (2018) · Zbl 1536.83072 · doi:10.1088/1475-7516/2018/10/041
[13] Mishra, A. K.; Chakraborty, S.; Sarkar, S., Understanding photon sphere and black hole shadow in dynamically evolving spacetimes, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.104080
[14] Wei, S. W.; Zou, Y. C.; Liu, Y. X.; Mann, R. B., Curvature radius and Kerr black hole shadow, J. Cosmol. Astropart. Phys., JCAP08(2019)030 (2019) · Zbl 1541.83059 · doi:10.1088/1475-7516/2019/08/030
[15] Contreras, E.; Rincón, A.; Panotopoulos, G.; Bargueño, P.; Koch, B., Black hole shadow of a rotating scale-dependent black hole, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.064053
[16] Lü, H.; Lyu, H. D., Schwarzschild black holes have the largest size, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.044059
[17] Feng, X. H.; Lü, H., On the size of rotating black holes, Eur. Phys. J. C, 80, 551. (2020) · doi:10.1140/epjc/s10052-020-8119-z
[18] Das, A.; Saha, A.; Gangopadhyay, S., Investigation of circular geodesics in a rotating charged black hole in the presence of perfect fluid dark matter, Class. Quantum Grav., 38 (2021) · Zbl 1479.83129 · doi:10.1088/1361-6382/abd95b
[19] Saha, A.; Madhav Modumudi, S.; Gangopadhyay, S., Shadow of a noncommutative geometry inspired Ayón Beato García black hole, Gen. Rel. Grav., 50, 103 (2018) · Zbl 1400.83039 · doi:10.1007/s10714-018-2423-z
[20] Amarilla, L.; Eiroa, E. F.; Giribet, G., Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.124045
[21] Amarilla, L.; Eiroa, E. F., Shadow of a rotating braneworld black hole, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.064019
[22] Amarilla, L.; Eiroa, E. F., Shadow of a Kaluza-Klein rotating dilaton black hole, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.044057
[23] Dastan, S.; Saffari, R.; Soroushfar, S., Shadow of a charged rotating black hole in f(R) gravity, Eur. Phys. J. Plus, 137, 1002 (2022) · doi:10.1140/epjp/s13360-022-03218-0
[24] Dastan, S.; Saffari, R.; Soroushfar, S., Shadow of a Kerr-Sen dilaton-axion Black Hole (2016)
[25] Kumar, R.; Singh, B. P.; Ali, M. S.; Ghosh, S. G., Shadows of black hole surrounded by anisotropic fluid in Rastall theory, Phys. Dark Univ., 34 (2021) · doi:10.1016/j.dark.2021.100881
[26] Vetsov, T.; Gyulchev, G.; Yazadjiev, S., Shadows of black holes in vector-tensor galileons modified gravity (2018)
[27] Hennigar, R. A.; Poshteh, M. B J.; Mann, R. B., Shadows, signals and stability in Einsteinian cubic gravity, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.064041
[28] Wang, H. M.; Xu, Y. M.; Wei, S. W., Shadows of Kerr-like black holes in a modified gravity theory, J. Cosmol. Astropart. Phys., JCAP03(2019)046 (2019) · Zbl 1542.83015 · doi:10.1088/1475-7516/2019/03/046
[29] Konoplya, R. A.; Zhidenko, A., Analytical representation for metrics of scalarized Einstein-Maxwell black holes and their shadows, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.044015
[30] Kumar, R.; Ghosh, S. G.; Wang, A., Shadow cast and deflection of light by charged rotating regular black holes, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.124024
[31] Zhu, T.; Wu, Q.; Jamil, M.; Jusufi, K., Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.044055
[32] Khodabakhshi, H.; Giaimo, A.; Mann, R. B., Einstein quartic gravity: shadows, signals and stability, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.044038
[33] Kumar, R.; Ghosh, S. G.; Wang, A., Gravitational deflection of light and shadow cast by rotating Kalb-Ramond black holes, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.104001
[34] Guo, S.; He, K. J.; Li, G. R.; Li, G. P., The shadow and photon sphere of the charged black hole in Rastall gravity, Class. Quantum Grav., 38 (2021) · Zbl 1482.83085 · doi:10.1088/1361-6382/ac12e4
[35] Ma, L.; Lü, H., Bounds on photon spheres and shadows of charged black holes in Einstein-Gauss-Bonnet-Maxwell gravity, Phys. Lett. B, 807 (2020) · Zbl 1473.83015 · doi:10.1016/j.physletb.2020.135535
[36] Das, A.; Saha, A.; Gangopadhyay, S., Shadow of charged black holes in Gauss-Bonnet gravity, Eur. Phys. J. C, 80, 180 (2020) · doi:10.1140/epjc/s10052-020-7726-z
[37] Kumar, R.; Singh, B. P.; Ghosh, S. G., Shadow and deflection angle of rotating black hole in asymptotically safe gravity, Ann. Phys., 120 (2020) · Zbl 1451.83026 · doi:10.1016/j.aop.2020.168252
[38] Övgün, A.; Sakalli, I.; Saavedra, J.; Leiva, C., Shadow cast of noncommutative black holes in Rastall gravity, Modern Phys. Lett. A, 35 (2020) · Zbl 1439.83015 · doi:10.1142/S0217732320501631
[39] Cunha, P. V P.; Herdeiro, C. A R., Shadow and strong gravitational lensing: a brief review, Gen. Relativ. Gravit., 50, 42 (2018) · Zbl 1392.83002 · doi:10.1007/s10714-018-2361-9
[40] Cunha, P. V P.; Herdeiro, C. A R., Stationary black holes and light rings, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.181101
[41] Qiao, C-K; Li, M., Geometric approach to circular photon orbits and black hole shadows, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.L021501
[42] Perlick, V.; Tsupko, O. Y., Calculating black hole shadows: review of analytical studies, Phys. Rep., 947, 1-39 (2022) · Zbl 1486.85026 · doi:10.1016/j.physrep.2021.10.004
[43] Hobson, M. P.; Efstathiou, G. P.; Lasenby, A. N., General Relativity: An Introduction for Physicists (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1104.83001
[44] Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1095.83002
[45] Einstein, A.; Straus, E. G., The influence of the expansion of space on the gravitation fields surrounding the individual stars, Rev. Modern Phys., 17, 120 (1945) · Zbl 0060.44301 · doi:10.1103/RevModPhys.17.120
[46] Schücking, E., Das Schwarzschildsche linienelement und die expansion des Weltalls, Z. Phys., 137, 595 (1954) · Zbl 0055.21006 · doi:10.1007/BF01375011
[47] McVittie, G. C., The mass-particle in an expanding universe, Mon. Not. R. Astron. Soc., 93, 325 (1933) · Zbl 0007.08404 · doi:10.1093/mnras/93.5.325
[48] Kottler, F., Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie, Ann. Phys., 361, 401 (1918) · JFM 46.1306.01 · doi:10.1002/andp.19183611402
[49] Roy, R.; Chakrabarti, S., Study on black hole shadows in asymptotically de Sitter spacetimes, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.024059
[50] Perlick, V.; Tsupko, O. Y.; Bisnovatyi-Kogan, G. S., Black hole shadow in an expanding universe with a cosmological constant, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.104062
[51] Bisnovatyi-Kogan, G. S.; Tsupko, O. Y., Shadow of a black hole at cosmological distances, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.084020
[52] Firouzjaee, J. T.; Allahyari, A., Black hole shadow with a cosmological constant for cosmological observers, Eur. Phys. J. C, 79, 930 (2019) · doi:10.1140/epjc/s10052-019-7464-2
[53] Tsupko, O. Y.; Bisnovatyi-Kogan, G. S., First analytical calculation of black hole shadow in McVittie metric, Int. J. Mod. Phys. D, 29 (2020) · Zbl 1443.83029 · doi:10.1142/S0218271820500625
[54] Li, P. C.; Guo, M.; Chen, B., Shadow of a spinning black hole in an expanding universe, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.084041
[55] Chowdhuri, A.; Bhattacharyya, A., Shadow analysis for rotating black holes in the presence of plasma for an expanding universe, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.064039
[56] Cotăescu, I. I., Light from Schwarzschild black holes in de Sitter expanding universe, Eur. Phys. J. C, 81, 32 (2021) · doi:10.1140/epjc/s10052-020-08822-x
[57] Afrin, M.; Ghosh, S. G., Estimating the cosmological constant from Shadows of Kerr de-Sitter Black Holes, Universe, 8, 52 (2022) · doi:10.3390/universe8010052
[58] Tsupko, O. Y.; Bisnovatyi-Kogan, G. S., Relativistic rings due to Schwarzschild gravitational lensing, Grav. Cosmol., 15, 184-7 (2009) · Zbl 1176.83101 · doi:10.1134/S0202289309020182
[59] Bisnovatyi-Kogan, G. S.; Tsupko, O. Y., Gravitational lensing in a non-uniform plasma, Mon. Not. R. Astron. Soc., 404, 4 (2010) · doi:10.1111/j.1365-2966.2010.16290.x
[60] Morozova, V. S.; Ahmedov, B. J.; Tursunov, A. A., Gravitational lensing by a rotating massive object in a plasma, Astrophys. Space. Sci., 346, 513-20 (2013) · doi:10.1007/s10509-013-1458-6
[61] Atamurotov, F.; Ghosh, S. G., Gravitational weak lensing by a naked singularity in plasma, Eur. Phys. J. Plus, 137, 662 (2022) · doi:10.1140/epjp/s13360-022-02885-3
[62] Breuer, R. A.; Ehlers, J., Propagation of electromagnetic waves through magnetized plasmas in arbitrary gravitational fields, Astron. Astrophys., 96, 293-5 (1981) · Zbl 0482.76126
[63] Perlick, V.; Tsupko, O. Y.; Bisnovatyi-Kogan, G. S., Influence of a plasma on the shadow of a spherically symmetric black hole, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.104031
[64] Rogers, A., Frequency-dependent effects of gravitational lensing within plasma, Mon. Not. R. Astron. Soc., 451, 17-25 (2015) · doi:10.1093/mnras/stv903
[65] Atamurotov, F.; Ahmedov, B.; Abdujabbarov, A., Optical properties of black holes in the presence of a plasma: The shadow, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.084005
[66] Sharif, M.; Iftikhar, S., Shadow of a charged rotating non-commutative black hole, Eur. Phys. J. C, 76, 630 (2016) · doi:10.1140/epjc/s10052-016-4472-3
[67] Bisnovatyi-Kogan, G. S.; Tsupko, O. Y., Gravitational lensing in presence of plasma: strong lens systems, black hole lensing and shadow, Universe, 3, 57 (2017) · doi:10.3390/universe3030057
[68] Abdujabbarov, A.; Toshmatov, B.; Stuchlík, Z.; Ahmedov, B., Shadow of the rotating black hole with quintessential energy in the presence of plasma, Int. J. Mod. Phys. D, 26 (2017) · Zbl 1367.83040 · doi:10.1142/S0218271817500511
[69] Liu, C. Q.; Ding, C. K.; Jing, J. L., Effects of homogeneous plasma on strong gravitational lensing of Kerr black holes, Chin. Phys. Lett., 34 (2017) · doi:10.1088/0256-307X/34/9/090401
[70] Huang, Y.; Dong, Y. P.; Liu, D. J., Revisiting the shadow of a black hole in the presence of a plasma, Int. J. Mod. Phys. D, 27 (2018) · doi:10.1142/S0218271818501146
[71] Ahmedov, B.; Turimov, B.; Stuchlík, Z.; Tursunov, A., Optical properties of magnetized black hole in plasma, Int. J. Mod. Phys. D, 49 (2019)
[72] Babar, G. Z.; Babar, A. Z.; Atamurotov, F., Optical properties of Kerr-Newman spacetime in the presence of plasma, Eur. Phys. J. C, 80, 761 (2020) · doi:10.1140/epjc/s10052-020-8346-3
[73] Badia, J.; Eiroa, E. F., Shadow of black holes with a plasma environment in 4D Einstein-Gauss-Bonnet gravity (2021)
[74] Badia, J.; Eiroa, E. F., Shadow of axisymmetric, stationary and asymptotically flat black holes in the presence of plasma, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.084055
[75] Das, A.; Saha, A.; Gangopadhyay, S., Study of circular geodesics and shadow of rotating charged black hole surrounded by perfect fluid dark matter immersed in plasma, Class. Quantum Grav., 39 (2022) · Zbl 1487.83083 · doi:10.1088/1361-6382/ac50ed
[76] Zhang, Z.; Yan, H.; Guo, M.; Chen, B., Shadow of Kerr black hole surrounded by an angular Gaussian distributed plasma (2022)
[77] Synge, J. L., Relativity, The General Theory (1960), Amsterdam: North-Holland, Amsterdam · Zbl 0090.18504
[78] Lebedev, D.; Lake, K., On the influence of the cosmological constant on trajectories of light and associated measurements in Schwarzschild de Sitter space (2013)
[79] Lebedev, D.; Lake, K., Relativistic aberration and the cosmological constant in gravitational lensing I: Introduction (2016)
[80] Perlick, V., Ray Optics, Fermat’s Principle and Applications to General Relativity (2000), Berlin: Springer, Berlin · Zbl 0964.83002
[81] Planck Collaboration, Planck 2018 results VI. Cosmological parameters, Astron. Astronphys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[82] Davis, T. M.; Scrimgeour, M. I., Deriving accurate peculiar velocities (even at high redshift), Mon. Not. R. Astron. Soc., 442, 1117-22 (2014) · doi:10.1093/mnras/stu920
[83] Cappellari, M., The ATLAS \(####\) project- I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria, Mon. Not. R. Astron. Soc., 413, 813-36 (2011) · doi:10.1111/j.1365-2966.2010.18174.x
[84] Vagnozzi, S., Horizon-scale tests of gravity theories and fundamental physics from the event horizon telescope image of sagittarius A \(#### (2022)\)
[85] Ghosh, S. G.; Afrin, M., Constraining Kerr-like black holes with event horizon telescope results of Sgr A* (2022)
[86] Walia, R. K.; Ghosh, S. G.; Maharaj, S. D., Testing rotating regular metrics with EHT results of Sgr A \(#### (2022)\)
[87] Sengo, I.; Cunha, P. V P.; Herdeiro, C. A R.; Radu, E., Kerr black holes with synchronised Proca hair: lensing, shadows and EHT constraints (2022) · Zbl 1520.83065
[88] Event Horizon Telescope Collaboration, First sagittarius A \(####\) event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way, Astrophys. J. Lett., 930, L12 (2022) · doi:10.3847/2041-8213/ac6674
[89] GRAVITY Collaboration, Deep images of the galactic center with GRAVITY, Astron. Astronphys., 657, A82 (2022) · doi:10.1051/0004-6361/202142459
[90] Rindler, W.; Ishak, M., Contribution of the cosmological constant to the relativistic bending of light revisited, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.043006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.