×

Calculating black hole shadows: review of analytical studies. (English) Zbl 1486.85026

Summary: In this article, we provide a review of the current state of the research of the black hole shadow, focusing on analytical (as opposed to numerical and observational) studies. We start with particular attention to the definition of the shadow and its relation to the often used concepts of escape cone, critical impact parameter and particle cross-section. For methodological purposes, we present the derivation of the angular size of the shadow for an arbitrary spherically symmetric and static space-time, which allows one to calculate the shadow for an observer at arbitrary distance from the center. Then we discuss the calculation of the shadow of a Kerr black hole, for an observer anywhere outside of the black hole. For observers at large distances we present and compare two methods used in the literature. Special attention is given to calculating the shadow in space-times which are not asymptotically flat. Shadows of wormholes and other black-hole impostors are reviewed. Then we discuss the calculation of the black hole shadow in an expanding universe as seen by a comoving observer. The influence of a plasma on the shadow of a black hole is also considered.

MSC:

85A25 Radiative transfer in astronomy and astrophysics
83C57 Black holes
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering
83E05 Geometrodynamics and the holographic principle

References:

[1] Schneider, P.; Ehlers, J.; Falco, E. E., Gravitational Lenses (1992), Springer-Verlag: Springer-Verlag Berlin
[2] Blandford, R. D.; Narayan, R., Cosmological applications of gravitational lensing, Ann. Rev. Astron. Astrophys., 30, 311 (1992)
[3] Petters, A. O.; Levine, H.; Wambsganss, J., Singularity Theory and Gravitational Lensing (2001), Birkhäuser: Birkhäuser Boston, MA · Zbl 0979.83001
[4] Perlick, V., Gravitational lensing from a space-time perspective, Living Rev. Relativ., 7, 9 (2004) · Zbl 1071.83009
[5] Schneider, P.; Kochanek, C. S.; Wambsganss, J., Gravitational Lensing: Strong, Weak and Micro (2006), Springer: Springer Berlin
[6] Bartelmann, M., Gravitational lensing, Classical Quantum Gravity, 27, Article 233001 pp. (2010) · Zbl 1207.83002
[7] Dodelson, S., Gravitational Lensing (2017), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 1368.83001
[8] Congdon, A. B.; Keeton, C., Principles of Gravitational Lensing: Light Deflection As a Probe of Astrophysics and Cosmology (2018), Springer, Cham: Springer, Cham Switzerland · Zbl 1406.83001
[9] First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole, Astrophys. J. Lett., 875, L1 (2019)
[10] First M87 Event Horizon Telescope results. II. Array and instrumentation, Astrophys. J. Lett., 875, L2 (2019)
[11] First M87 Event Horizon Telescope results. III. Data processing and calibration, Astrophys. J. Lett., 875, L3 (2019)
[12] First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. Lett., 875, L4 (2019)
[13] First M87 Event Horizon Telescope results. V. Physical origin of the asymmetric ring, Astrophys. J. Lett., 875, L5 (2019)
[14] First M87 Event Horizon Telescope results. VI. The shadow and mass of the central black hole, Astrophys. J. Lett., 875, L6 (2019)
[15] Falcke, H.; Melia, F.; Agol, E., Viewing the shadow of the black hole at the Galactic center, Astrophys. J. Lett., 528, L13 (2000)
[16] Melia, F.; Falcke, H., The supermassive black hole at the Galactic center, Annu. Rev. Astron. Astrophys., 39, 309 (2001)
[17] Broderick, A. E.; Loeb, A., Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A*, Mon. Not. R. Astron. Soc., 363, 353 (2005)
[18] Mościbrodzka, M.; Gammie, Ch. F.; Dolence, J. C.; Shiokawa, H.; Leung, Po Kin, Radiative models of Sgr A* from GRMHD simulations, Astrophys. J., 706, 497 (2009)
[19] Dexter, J.; Agol, E.; Chris Fragile, P., Millimeter flares and VLBI visibilities from relativistic simulations of magnetized accretion onto the galactic center black hole, Astrophys. J. Lett., 703, L142 (2009)
[20] Broderick, A. E.; Fish, V. L.; Doeleman, Sh. S.; Loeb, A., Evidence for low black hole spin and physically motivated accretion models from millimeter-VLBI observations of Sagittarius A*, Astrophys. J., 735, 110 (2011)
[21] Broderick, A. E.; Johannsen, T.; Loeb, A.; Psaltis, D., Testing the no-hair theorem with Event Horizon Telescope observations of Sagittarius A*, Astrophys. J., 784, 7 (2014)
[22] Gralla, S. E.; Holz, D. E.; Wald, R. M., Black hole shadows, photon rings, and lensing rings, Phys. Rev. D, 100, Article 024018 pp. (2019)
[23] Narayan, R.; Johnson, M. D.; Gammie, C. F., The shadow of a spherically accreting black hole, Astrophys. J. Lett., 885, L33 (2019)
[24] Johnson, M. D.; Lupsasca, A.; Strominger, A., Universal interferometric signatures of a black hole’s photon ring, Sci. Adv., 6, Article eaaz1310 pp. (2020)
[25] Bronzwaer, Th.; Davelaar, J.; Younsi, Z., Visibility of black hole shadows in low-luminosity AGN, Mon. Not. R. Astron. Soc., 501, 4722 (2021)
[26] Kocherlakota, P., Constraints on black-hole charges with the 2017 EHT observations of M \(87{}^\ast \), Phys. Rev. D, 103, Article 104047 pp. (2021)
[27] Broderick, A. E.; Tiede, P.; Pesce, D. W.; Gold, R., Measuring spin from relative photon ring sizes (2021), arXiv:2105.09962
[28] Bronzwaer, Th.; Falcke, H., The nature of black hole shadows (2021), arXiv:2108.03966
[29] Zakharov, A. F.; Nucita, A. A.; DePaolis, F.; Ingrosso, G., Measuring the black hole parameters in the galactic center with RADIOASTRON, New Astron., 10, 479 (2005)
[30] Kardashev, N. S.; Novikov, I. D.; Lukash, V. N., Review of scientific topics for the Millimetron space observatory, Phys.-Usp., 57, 1199 (2014)
[31] Andrianov, A. S.; Baryshev, A. M.; Falcke, H., Simulations of M87 and Sgr A* imaging with the Millimetron Space Observatory on near-Earth orbits, Mon. Not. R. Astron. Soc., 500, 4866 (2021)
[32] Likhachev, S. F.; Rudnitskiy, A. G.; Shchurov, M. A., High resolution imaging of a black hole shadow with millimetron orbit around Lagrange point L2 (2021), arXiv:2108.03077
[33] Novikov, I. D.; Likhachev, S. F.; Shchekinov, Yu. A., Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization, Phys.-Usp., 64, 386 (2021)
[34] https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole.
[35] Luminet, J.-P., Image of a spherical black hole with thin accretion disk, Astron. Astrophys., 75, 228 (1979)
[36] Viergutz, S. U., Image generation in Kerr geometry, I. Analytical investigations on the stationary emitter-observer problem, Astron. Astrophys., 272, 355 (1993)
[37] James, O.; von Tunzelmann, E.; Franklin, P.; Thorne, K. S., Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar, Classical Quantum Gravity, 32, Article 065001 pp. (2015)
[38] Synge, J. L., The escape of photons from gravitationally intense stars, Mon. Not. R. Astron. Soc., 131, 463 (1966)
[39] Zeldovich, Ya. B.; Novikov, I. D., Relativistic astrophysics. II, Sov. Phys. Usp., 8, 522 (1966), Russian original: Usp. Fiz. Nauk 86 (1965) 447
[40] Bardeen, J. M., Timelike and null geodesics in the Kerr metric, (DeWitt, C.; DeWitt, B., Black Holes (1973), Gordon and Breach: Gordon and Breach New York), 215
[41] Chandrasekhar, S., The Mathematical Theory of Black Holes (1983), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0511.53076
[42] Young, P. J., Capture of particles from plunge orbits by a black hole, Phys. Rev. D, 14, 3281 (1976)
[43] Luminet, J.-P., Seeing black holes: From the computer to the telescope, Universe, 4, 86 (2018)
[44] Dymnikova, I. G., Motion of particles and photons in the gravitational field of a rotating body, Sov. Phys. Usp., 29, 215 (1986)
[45] Fukue, J., Silhouette of a dressed black hole, Publ. Astron. Soc. Japan, 55, 155 (2003)
[46] Broderick, A. E.; Loeb, A., Imaging the black hole silhouette of M87: Implications for jet formation and black hole spin, Astrophy. J., 697, 1164 (2009)
[47] Johannsen, T.; Psaltis, D., Testing the no-hair theorem with observations in the electromagnetic spectrum, II. Black hole images, Astrophys. J., 718, 446 (2010)
[48] Bambi, C., Black Holes: A Laboratory for Testing Strong Gravity (2017), Springer: Springer Singapore · Zbl 1369.83002
[49] Grenzebach, A.; Perlick, V.; Lämmerzahl, C., Photon regions and shadows of Kerr-Newman-NUT black holes with a cosmological constant, Phys. Rev. D, 89, Article 124004 pp. (2014)
[50] Grenzebach, A.; Perlick, V.; Lämmerzahl, C., Photon regions and shadows of accelerated black holes, Internat. J. Modern Phys. D, 24, Article 1542024 pp. (2015) · Zbl 1339.83044
[51] Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.; Perlick, V., Shadow of black holes at local and cosmological distances, (Proceedings of Science, Multifrequency Behaviour of High Energy Cosmic Sources - XIII. 3-8 2019. Palermo, Italy (2019)), Online at https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=362, id.9; arXiv:1910.10514
[52] Hilbert, D., Die Grundlagen der Physik, (Zweite Mitteilung), Nachr. Gesellsch. Wissensch. Göttingen, Math.-Phys. Kl., 53 (1917) · JFM 46.1298.01
[53] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation (1973), Freeman: Freeman San Francisco
[54] Cunha, P. V.P.; Herdeiro, C. A.R., Shadows and strong gravitational lensing: a brief review, Gen. Relativity Gravitation, 50, 42 (2018) · Zbl 1392.83002
[55] Johannsen, T., Photon rings around Kerr and Kerr-like black holes, Astrophy. J., 777, 170 (2013)
[56] Virbhadra, K. S.; Ellis, G. F.R., Schwarzschild black hole lensing, Phys. Rev. D, 62, Article 084003 pp. (2000)
[57] Bozza, V.; Capozziello, S.; Iovane, G.; Scarpetta, G., Strong field limit of black hole gravitational lensing, Gen. Relativity Gravitation, 33, 1535 (2001) · Zbl 1009.83027
[58] Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu., Strong gravitational lensing by Schwarzschild black holes, Astrophysics, 51, 99 (2008) · Zbl 1153.83022
[59] Bisnovatyi-Kogan, G. S.; Yu. Tsupko, O., Gravitational lensing in presence of plasma: Strong lens systems, black hole lensing and shadow, Universe, 3, 57 (2017)
[60] Psaltis, D., Gravitational test beyond the first post-Newtonian order with the shadow of the M87 black hole, Phys. Rev. Lett., 125, Article 141104 pp. (2020)
[61] Cunningham, C. T.; Bardeen, J. M., The optical appearance of a star orbiting an extreme Kerr black hole, Astrophys. J., 183, 237 (1973)
[62] Dokuchaev, V. I.; Nazarova, N. O., Silhouettes of invisible black holes, Phys.-Usp., 63, 583 (2020)
[63] Chael, A.; Johnson, M. D.; Lupsasca, A., Observing the inner shadow of a black hole: A direct view of the event horizon (2021), arXiv:2106.00683
[64] Hasse, W.; Perlick, V., Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal, Gen. Relativity Gravitation, 34, 415 (2002) · Zbl 0996.83013
[65] Bozza, V., Gravitational lensing in the strong field limit, Phys. Rev. D, 66, Article 103001 pp. (2002)
[66] Pande, A. K.; Durgapal, M. C., Trapping of photons in spherical static configurations, Classical Quantum Gravity, 3, 547 (1986)
[67] Cvetič, M.; Gibbons, G. W.; Pope, C. N., Photon spheres and sonic horizons in black holes from supergravity and other theories, Phys. Rev. D, 94, Article 106005 pp. (2016)
[68] d’E. Atkinson, R., On light tracks near a very massive star, Astron. J., 70, 517 (1965)
[69] Virbhadra, K. S.; Ellis, G. F.R., Gravitational lensing by naked singularities, Phys. Rev. D, 65, Article 103004 pp. (2002)
[70] Claudel, Clarissa-Marie; Virbhadra, K. S.; Ellis, G. F.R., The geometry of photon surfaces, J. Math. Phys., 42, 818 (2001) · Zbl 1061.83525
[71] Perlick, V.; Yu. Tsupko, O.; Bisnovatyi-Kogan, G. S., Influence of a plasma on the shadow of a spherically symmetric black hole, Phys. Rev. D, 92, Article 104031 pp. (2015)
[72] Konoplya, R. A., Shadow of a black hole surrounded by dark matter, Phys. Lett. B, 795, 1 (2019) · Zbl 1421.83058
[73] Konoplya, R. A.; Pappas, Th.; Zhidenko, A., Einstein-scalar-Gauss-Bonnet black holes: Analytical approximation for the metric and applications to calculations of shadows, Phys. Rev. D, 101, Article 044054 pp. (2020)
[74] Konoplya, R. A., Quantum corrected black holes: Quasinormal modes, scattering, shadows, Phys. Lett. B, 804, Article 135363 pp. (2020)
[75] Grenzebach, A., Aberrational effects for shadows of black holes, (Puetzfeld, D.; Laemmerzahl, C.; Schutz, B., Equations of Motion in Relativistic Gravity (2015), Springer: Springer Heidelberg) · Zbl 1338.83106
[76] Grenzebach, A., The Shadow of Black Holes: An Analytic Description (2016), Springer: Springer Heidelberg · Zbl 1347.83004
[77] Eiroa, E. F.; Romero, G. E.; Torres, D. F., Reissner-Nordström black hole lensing, Phys. Rev. D, 66, Article 024010 pp. (2002)
[78] Zakharov, A. F., Constraints on a charge in the Reissner-Nordström metric for the black hole at the Galactic center, Phys. Rev. D, 90, Article 062007 pp. (2014)
[79] Zakharov, A. F., Particle capture cross sections for a Reissner-Nordström black hole, Classical Quantum Gravity, 11, 1027 (1994)
[80] Zakharov, A. F.; De Paolis, F.; Ingrosso, G.; Nucita, A. A., Direct measurements of black hole charge with future astrometrical missions, Astron. Astrophys., 442, 795 (2005)
[81] Zakharov, A. F.; De Paolis, F.; Ingrosso, G.; Nucita, A. A., Shadows as a tool to evaluate black hole parameters and a dimension of spacetime, New Astron. Rev., 56, 64 (2012)
[82] Zakharov, A. F., Constraints on a tidal charge of the supermassive black hole in M87* with the EHT observations in 2017 (2021), arXiv:2108.01533
[83] Alexeyev, S. O.; Latosh, B. N.; Prokopov, V. A.; Emtsova, E. D., Phenomenological extension for tidal charge black hole, J. Exp. Theor. Phys., 128, 720 (2019)
[84] Kottler, F., Über die physikalischen Grundlagen der EinsteinSchen gravitationstheorie, Ann. Phys. (Berlin), 361, 401 (1918) · JFM 46.1306.01
[85] Lake, K.; Roeder, R. C., Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold, Phys. Rev. D, 15, 3513 (1977)
[86] Stuchlík, Z., The motion of test particles in black-hole backgrounds with non-zero cosmological constant, Bull. Astron. Inst. Czechoslovakia, 34, 129 (1983) · Zbl 0562.70002
[87] Stuchlík, Z.; Hledík, S., Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter space-times, Phys. Rev. D, 60, Article 044006 pp. (1999)
[88] Perlick, V.; Tsupko, O. Y.; Bisnovatyi-Kogan, G. S., Black hole shadow in an expanding universe with a cosmological constant, Phys. Rev. D, 97, Article 104062 pp. (2018)
[89] Carter, B., Global structure of the Kerr family of gravitational fields, Phys. Rev., 174, 1559 (1968) · Zbl 0167.56301
[90] Teo, E., Spherical photon orbits around a Kerr black hole, Gen. Relativity Gravitation, 35, 1909 (2003) · Zbl 1047.83024
[91] Hod, Sh., Spherical null geodesics of rotating Kerr black holes, Phys. Lett. B, 718, 1552 (2013) · Zbl 1372.83043
[92] Igata, T.; Ishihara, H.; Yasunishi, Yu., Observability of spherical photon orbits in near-extremal Kerr black holes, Phys. Rev. D, 100, Article 044058 pp. (2019)
[93] da Cunha, P. V.P., Black Hole Shadows (2015), University of Coimbra: University of Coimbra Portugal, (Master thesis)
[94] Teo, E., Spherical orbits around a Kerr black hole, Gen. Relativity Gravitation, 53, 10 (2021) · Zbl 1482.83105
[95] L.C. Stein, https://duetosymmetry.com/tool/kerr-circular-photon-orbits/.
[96] Hasse, W.; Perlick, V., A Morse-theoretical analysis of gravitational lensing in the Kerr-Newman spacetime, J. Math. Phys., 47, Article 042503 pp. (2006) · Zbl 1111.83031
[97] Perlick, V., On totally umbilic submanifolds of semi-Riemannian manifolds, Nonlinear Anal., 63, Article e511 pp. (2005) · Zbl 1159.53342
[98] Cederbaum, C., Uniqueness of photon spheres in static vacuum asymptotically flat spacetimes, Contemp. Math., 667, 86 (2015) · Zbl 1348.35266
[99] Yazadjiev, S.; Lazov, B., Uniqueness of the static Einstein-Maxwell spacetimes with a photon sphere, Classical Quantum Gravity, 32, Article 165021 pp. (2015) · Zbl 1327.83081
[100] Cederbaum, C.; Galloway, G. J., Uniqueness of photon spheres in electro-vacuum spacetimes, Classical Quantum Gravity, 33, Article 075006 pp. (2016) · Zbl 1336.83024
[101] Yazadjiev, S., Uniqueness of the static spacetimes with a photon sphere in Einstein-scalar field theory, Phys. Rev. D, 91, Article 123013 pp. (2015)
[102] Yazadjiev, S.; Lazov, B., Classification of the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes with a photon sphere, Phys. Rev. D, 93, Article 083002 pp. (2016)
[103] Rogatko, M., Uniqueness of photon sphere for Einstein-Maxwell-dilaton black holes with arbitrary coupling constant, Phys. Rev. D, 93, Article 064003 pp. (2016)
[104] Yoshino, H., Uniqueness of static photon surfaces: Perturbative approach, Phys. Rev. D, 95, Article 044047 pp. (2017)
[105] Yu. Tsupko, O., Analytical calculation of black hole spin using deformation of the shadow, Phys. Rev. D, 95, Article 104058 pp. (2017)
[106] Semerák, O., Photon escape cones in the Kerr field, Helv. Phys. Acta, 69, 69 (1996) · Zbl 0848.53059
[107] Perlick, V.; Yu. Tsupko, O., Light propagation in a plasma on Kerr space-time: Separation of the Hamilton-Jacobi equation and calculation of the shadow, Phys. Rev. D, 95, Article 104003 pp. (2017)
[108] Cunningham, C. T.; Bardeen, J. M., The optical appearance of a star orbiting an extreme Kerr black hole, Astrophy. J. Lett., 173, L137 (1972)
[109] Frolov, V. P.; Zelnikov, A., Introduction to Black Hole Physics (2011), Oxford Univ. Press: Oxford Univ. Press New York · Zbl 1234.83001
[110] Bozza, V.; De Luca, F.; Scarpetta, G.; Sereno, M., Analytic Kerr black hole lensing for equatorial observers in the strong deflection limit, Phys. Rev. D, 72, Article 083003 pp. (2005)
[111] Bozza, V.; De Luca, F.; Scarpetta, G., Kerr black hole lensing for generic observers in the strong deflection limit, Phys. Rev. D, 74, Article 063001 pp. (2006)
[112] Bozza, V., Optical caustics of Kerr space-time: The full structure, Phys. Rev. D, 78, Article 063014 pp. (2008)
[113] Bozza, V., Gravitational lensing by black holes, Gen. Relativity Gravitation, 42, 2269 (2010) · Zbl 1197.83063
[114] Rauch, K. P.; Blandford, R. D., Optical caustics in a Kerr space-time and the origin of rapid X-ray variability in Active Galactic Nuclei, Astrophys. J., 421, 46 (1994)
[115] Takahashi, R., Shapes and positions of black hole shadows in accretion disks and spin parameters of black holes, Astrophys. J., 611, 996 (2004)
[116] Gralla, S. E.; Lupsasca, A., Observable shape of black hole photon rings, Phys. Rev. D, 102, Article 124003 pp. (2020)
[117] Gralla, S. E.; Lupsasca, A.; Strominger, A., Observational signature of high spin at the Event Horizon Telescope, Mon. Not. R. Astron. Soc., 475, 3829 (2018)
[118] Chan, C.; Psaltis, D.; Özel, F., Gray: A massively parallel GPU-based code for ray tracing in relativistic space-times, Astrophys. J., 777, 13 (2013)
[119] Psaltis, D., Testing general relativity with the Event Horizon Telescope, Gen. Relativity Gravitation, 51, 137 (2019) · Zbl 1434.83074
[120] Zakharov, A. F., Types of unbound geodesics in the Kerr metric, Sov. Phys. J. Exp. Theor. Phys., 64, 1 (1986)
[121] Hioki, K.; Maeda, K., Measurement of the Kerr spin parameter by observation of a compact object’s shadow, Phys. Rev. D, 80, Article 024042 pp. (2009)
[122] Li, Z.; Bambi, C., Measuring the Kerr spin parameter of regular black holes from their shadow, J. Cosm. Astropart. Phys., 01, 041 (2014)
[123] Tsukamoto, N.; Li, Z.; Bambi, C., Constraining the spin and the deformation parameters from the black hole shadow, J. Cosm. Astropart. Phys., 06, 043 (2014)
[124] Abdujabbarov, A. A.; Rezzolla, L.; Ahmedov, B. J., A coordinate-independent characterization of a black hole shadow, Mon. Not. R. Astron. Soc., 454, 2423 (2015)
[125] Yang, L.; Li, Z., Shadow of a dressed black hole and determination of spin and viewing angle, Internat. J. Modern Phys. D, 25, Article 1650026 pp. (2016)
[126] Wei, S.; Liu, Y.; Mann, R. B., Intrinsic curvature and topology of shadows in Kerr space-time, Phys. Rev. D, 99, Article 041303 pp. (2019)
[127] Kumar, R.; Ghosh, S. G., Black hole parameter estimation from its shadow, Astrophys. J., 892, 78 (2020)
[128] Farah, J. R.; Pesce, D. W.; Johnson, M. D.; Blackburn, L., On the approximation of the black hole shadow with a simple polar curve, Astrophys. J., 900, 77 (2020)
[129] de Vries, A., The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set \(A_4\), Classical Quantum Gravity, 17, 123 (2000) · Zbl 0940.83018
[130] Konoplya, R.; Rezzolla, L.; Zhidenko, A., General parametrization of axisymmetric black holes in metric theories of gravity, Phys. Rev. D, 93, Article 064015 pp. (2016)
[131] Younsi, Z.; Zhidenko, A.; Rezzolla, L.; Konoplya, R.; Mizuno, Y., New method for shadow calculations: Application to parametrized axisymmetric black holes, Phys. Rev. D, 94, Article 084025 pp. (2016)
[132] Konoplya, R. A.; Stuchlík, Z.; Zhidenko, A., Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations, Phys. Rev. D, 97, Article 084044 pp. (2018)
[133] Konoplya, R. A.; Zhidenko, A., Shadows of parametrized axially symmetric black holes allowing for separation of variables (2021), arXiv:2103.03855 · Zbl 1479.83156
[134] Tsukamoto, N., Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes, Phys. Rev. D, 97, Article 064021 pp. (2018)
[135] Glampedakis, K.; Pappas, G., Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes, Phys. Rev. D, 99, Article 124041 pp. (2019)
[136] Cunha, P. V.P.; Herdeiro, C. A.R., Stationary black holes and light rings, Phys. Rev. Lett., 124, Article 181101 pp. (2020)
[137] Mars, M.; Paganini, C. F.; Oancea, M. A., The fingerprints of black holes - Shadows and their degeneracies, Classical Quantum Gravity, 35, Article 025005 pp. (2018) · Zbl 1383.83069
[138] Sen, A., Rotating charged black hole solution in heterotic string theory, Phys. Rev. Lett., 69, 1006 (1992) · Zbl 0968.83513
[139] Xavier, S. V.M. C.B.; Cunha, P. V.P.; Crispino, L. C.B.; Herdeiro, C. A.R., Shadows of charged rotating black holes: Kerr-Newman versus Kerr-Sen, Internat. J. Modern Phys. D, 29, Article 2041005 pp. (2020)
[140] Haroon, S.; Jamil, M.; Jusufi, K.; Lin, K.; Mann, R. B., Shadow and deflection angle of rotating black holes in perfect fluid dark matter with a cosmological constant, Phys. Rev. D, 99, Article 044015 pp. (2019)
[141] Neves, J. C.S., Upper bound on the GUP parameter using the black hole shadow, Eur. Phys. J. C, 80, 343 (2020)
[142] Amarilla, L.; Eiroa, E. F., Shadow of a rotating braneworld black hole, Phys. Rev. D, 85, Article 064019 pp. (2012)
[143] Eiroa, E. F.; Sendra, C. M., Shadow cast by rotating braneworld black holes with a cosmological constant, Eur. Phys. J. C, 78, 91 (2018)
[144] Neves, J. C.S., Constraining the tidal charge of brane black holes using their shadows, Eur. Phys. J. C, 80, 717 (2020)
[145] Newman, E. T.; Janis, A. I., Note on the Kerr spinning-particle metric, J. Math. Phys., 6, 915 (1965) · Zbl 0142.46305
[146] Azreg-Aïnou, M., Generating rotating regular black hole solutions without complexification, Phys. Rev. D, 90, Article 064041 pp. (2014)
[147] Lima Junior, H. C.D.; Crispino, L. C.B.; Cunha, P. V.P.; Herdeiro, C. A.R., Spinning black holes with a separable Hamilton-Jacobi equation from a modified Newman-Janis algorithm, Eur. Phys. J. C, 80, 1036 (2020)
[148] Abdolrahimi, S.; Mann, R. B.; Tzounis, C., Distorted local shadows, Phys. Rev. D, 91, Article 084052 pp. (2015)
[149] Grover, J.; Kunz, J.; Nedkova, P.; Wittig, A.; Yazadjiev, S., Multiple shadows from distorted static black holes, Phys. Rev. D, 97, Article 084024 pp. (2018)
[150] Cunha, P. V.P.; Herdeiro, C. A.R.; Radu, E.; Rúnarsson, H. F., Shadows of Kerr black holes with scalar hair, Phys. Rev. Lett., 115, Article 211102 pp. (2015) · Zbl 1347.83020
[151] Vincent, F. H.; Gourgoulhon, E.; Herdeiro, C.; Radu, E., Astrophysical imaging of Kerr black holes with scalar hair, Phys. Rev. D, 94, Article 084085 pp. (2016)
[152] Bohn, A.; Throwe, W.; Hébert, F.; Henriksson, K.; Bunandar, D.; Scheel, M. A.; Taylor, N. W., What does a binary black hole merger look like?, Classical Quantum Gravity, 32, Article 065002 pp. (2015)
[153] Nitta, D.; Chiba, T.; Sugiyama, N., Shadows of colliding black holes, Phys. Rev. D, 84, Article 063008 pp. (2011)
[154] Yumoto, A.; Nitta, D.; Chiba, T.; Sugiyama, N., Shadows of multi-black holes: Analytic exploration, Phys. Rev. D, 86, Article 103001 pp. (2012)
[155] Cunha, P. V.P.; Herdeiro, C. A.R.; Rodriguez, M. J., Shadows of exact binary black holes, Phys. Rev. D, 98, Article 044053 pp. (2018)
[156] Shipley, J. O.; Dolan, S. R., Binary black hole shadows, chaotic scattering and the Cantor set, Classical Quantum Gravity, 33, Article 175001 pp. (2016) · Zbl 1349.83052
[157] Gott, H.; Ayzenberg, D.; Yunes, N.; Lohfink, A., Observing the shadows of stellar-mass black holes with binary companions, Class Quantum Grav., 36, Article 055007 pp. (2019) · Zbl 1476.83086
[158] Abramowicz, M. A.; Kluźniak, W.; Lasota, J.-P., No observational proof of the black-hole event-horizon, Astr. Astrophys., 396, L31 (2002) · Zbl 1025.83503
[159] Cardoso, V.; Crispino, L. C.B.; Macedo, C. F.B.; Okawa, H.; Pani, P., Light rings as observational evidence for event horizons: Long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects, Phys. Rev. D, 90, Article 044069 pp. (2014)
[160] Einstein, A.; Rosen, N., The particle problem in the general theory of relativity, Phys. Rev., 48, 73 (1935) · Zbl 0012.13401
[161] Ellis, H., Ether flow through a drainhole: A particle model in general relativity, J. Math. Phys., 14, 104 (1973)
[162] Morris, M. S.; Thorne, K. S., Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity, Amer. J. Phys., 56, 395 (1988) · Zbl 0957.83529
[163] Kanti, P.; Kleihaus, B.; Kunz, J., Wormholes in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. Lett., 107, Article 271101 pp. (2011)
[164] Bronnikov, K. A.; Baleevskikh, K. A.; Skvortsova, M. V., Wormholes with fluid sources: A no-go theorem and new examples, Phys. Rev. D, 96, Article 124039 pp. (2017)
[165] Antoniou, G.; Bakopoulos, A.; Kanti, P., Novel Einstein-scalar-Gauss-Bonnet wormholes without exotic matter, Phys. Rev. D, 101, Article 024033 pp. (2020)
[166] Chetouani, L.; Clément, G., Geometrical optics in the Ellis geometry, Gen. Relativity Gravitation, 16, 111 (1984)
[167] Perlick, V., Exact gravitational lens equation in spherically symmetric and static space-times, Phys. Rev. D, 69, Article 064017 pp. (2004)
[168] Nandi, K. K.; Zhang, Y.-Zh.; Zakharov, A. V., Gravitational lensing by wormholes, Phys. Rev. D, 74, Article 024020 pp. (2006)
[169] Müller, T., Exact geometric optics in a Morris-Thorne wormhole space-time, Phys. Rev. D, 77, Article 044043 pp. (2008)
[170] Nakajima, K.; Asada, H., Deflection angle of light in an Ellis wormhole geometry, Phys. Rev. D, 85, Article 107501 pp. (2012)
[171] Ohgami, T.; Sakai, N., Wormhole shadows, Phys. Rev. D, 91, Article 124020 pp. (2015)
[172] Wielgus, M.; Horák, J.; Vincent, F.; Abramowicz, M., Reflection-asymmetric wormholes and their double shadows, Phys. Rev. D, 102, Article 084044 pp. (2020)
[173] Tsukamoto, N., Linearization stability of reflection-asymmetric thin-shell wormholes with double shadows, Phys. Rev. D, 103, Article 064031 pp. (2021)
[174] Teo, E., Rotating traversable wormholes, Phys. Rev. D, 58, Article 024014 pp. (1998)
[175] Nedkova, P. G.; Tinchev, V. K.; Yazadjiev, S. S., Shadow of a rotating traversable wormhole, Phys. Rev. D, 88, Article 124019 pp. (2013)
[176] Shaikh, R., Shadows of rotating wormholes, Phys. Rev. D, 98, Article 024044 pp. (2018)
[177] Gyulchev, G.; Nedkova, P.; Tinchev, V.; Yazadjiev, S., On the shadow of rotating traversable wormholes, Eur. Phys. J. C, 78, 544 (2018)
[178] Gal’tsov, D. V.; Kobialko, K. V., Photon trapping in static axially symmetric space-time, Phys. Rev. D, 100, Article 104005 pp. (2019)
[179] Vincent, F. H.; Meliani, Z.; Grandclément, P.; Gourgoulhon, E.; Straub, O., Imaging a boson star at the Galactic center, Classical Quantum Gravity, 33, Article 105015 pp. (2016)
[180] Herdeiro, C. A.R.; Pombo, A. M.; Radu, E.; Cunha, P. V.P.; Sanchis-Gual, N., The imitation game: Proca stars that can mimic the Schwarzschild shadow, J. Cosmol. Astropart. Phys., 04, 051 (2021) · Zbl 1485.85008
[181] Gómez, L. G.; Argüelles, C. R.; Perlick, V.; Rueda, J. A.; Ruffini, R., Strong lensing by fermionic dark matter in galaxies, Phys. Rev. D, 94, Article 123004 pp. (2016)
[182] Ames, W. L.; Thorne, K. S., The optical appearance of a star that is collapsing through its gravitational radius, Astrophys. J., 151, 659 (1968)
[183] Jaffe, J., Collapsing objects and the backward emission of light, Ann. Phys., NY, 55, 374 (1969)
[184] Lake, K.; Roeder, R. C., Note on the optical appearance of a star collapsing through its gravitational radius, Astrophys. J., 232, 277 (1979)
[185] Frolov, V. P.; Kim, K.; Lee, H. K., Spectral broadening of radiation from relativistic collapsing objects, Phys. Rev. D, 75, Article 087501 pp. (2007)
[186] Kong, L.; Malafarina, D.; Bambi, C., Can we observationally test the weak cosmic censorship conjecture?, Eur. Phys. J. C, 74, 2983 (2014)
[187] Kong, L.; Malafarina, D.; Bambi, C., Gravitational blueshift from a collapsing object, Phys. Lett. B, 741, 82 (2015) · Zbl 1373.83011
[188] Ortiz, N.; Sarbach, O.; Zannias, T., Shadow of a naked singularity, Phys. Rev. D, 92, Article 044035 pp. (2015)
[189] Ortiz, N.; Sarbach, O.; Zannias, T., Observational distinction between black holes and naked singularities: the role of the redshift function, Classical Quantum Gravity, 32, Article 247001 pp. (2015) · Zbl 1331.83048
[190] Schneider, S.; Perlick, V., The shadow of a collapsing dark star, Gen. Relativity Gravitation, 50, 58 (2018) · Zbl 1392.83056
[191] Oppenheimer, J. R.; Snyder, H., On continued gravitational contraction, Phys. Rev., 56, 455 (1939) · Zbl 0022.28104
[192] Mattig, W., Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit, Astron. Nachr., 284, 109 (1958)
[193] Zeldovich, Ya. B., Observations in a universe homogeneous in the mean, Sov. Astron., 8, 13 (1964)
[194] Dashevskii, V. M.; Zeldovich, Ya. B., Sov. Astron., 8, 854 (1965)
[195] Zeldovich, Ya. B.; Novikov, I. D., Relativistic Astrophysics (1983), The structure and Evolution of the Universe Univ. Chicago Press: The structure and Evolution of the Universe Univ. Chicago Press Chicago
[196] Hobson, M. P.; Efstathiou, G. P.; Lasenby, A. N., General Relativity: An Introduction for Physicists (2006), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1104.83001
[197] Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1095.83002
[198] Einstein, A.; Straus, E. G., The influence of the expansion of space on the gravitation fields surrounding the individual stars, Rev. Modern Phys., 17, 120 (1945) · Zbl 0060.44301
[199] Einstein, A.; Straus, E. G., Corrections and additional remarks to our paper: The influence of the expansion of space on the gravitation fields surrounding the individual stars, Rev. Modern Phys., 18, 148 (1946) · Zbl 0060.44302
[200] Schücking, E., Das Schwarzschildsche Linienelement und die Expansion des Weltalls, Z. Phys., 137, 595 (1954) · Zbl 0055.21006
[201] Stuchlík, Z., An Einstein-Strauss-de Sitter model of the universe, Bull. Astron. Inst. Czechoslovakia, 35, 205 (1984)
[202] Balbinot, R.; Bergamini, R.; Comastri, A., Solution of the Einstein-Strauss problem with a \(\Lambda\) term, Phys. Rev. D, 38, 2415 (1988)
[203] Schücker, T., Strong lensing in the Einstein-Straus solution, Gen. Relativity Gravitation, 41, 1595 (2009) · Zbl 1177.83036
[204] Schücker, T., Lensing in an interior Kottler solution, Gen. Relativity Gravitation, 42, 1991 (2010) · Zbl 1197.83039
[205] McVittie, G. C., The mass-particle in an expanding universe, Mon. Not. R. Astron. Soc., 93, 325 (1933) · Zbl 0007.08404
[206] Nolan, B. C., A point mass in an isotropic universe: Existence, uniqueness, and basic properties, Phys. Rev. D, 58, Article 064006 pp. (1998) · Zbl 1006.83008
[207] Nolan, B. C., A point mass in an isotropic universe: II, Global properties, Classical Quantum Gravity, 16, 1227 (1999) · Zbl 0968.83013
[208] Nolan, B. C., A point mass in an isotropic universe: III. The region \(R \leq 2 m\), Classical Quantum Gravity, 16, 3183 (1999) · Zbl 1007.83008
[209] Kaloper, N.; Kleban, M.; Martin, D., McVittie’s legacy: Black holes in an expanding universe, Phys. Rev. D, 81, Article 104044 pp. (2010)
[210] Carrera, M.; Giulini, D., Generalization of McVittie’s model for an inhomogeneity in a cosmological space-time, Phys. Rev. D, 81, Article 043521 pp. (2010)
[211] Carrera, M.; Giulini, D., Influence of global cosmological expansion on local dynamics and kinematics, Rev. Modern Phys., 82, 169 (2010)
[212] Anderson, M., Horizons, singularities and causal structure of the generalized McVittie space-times, J. Phys.: Conf. Ser., 283, Article 012001 pp. (2011)
[213] Lake, K.; Abdelqader, M., More on McVittie’s legacy: A Schwarzschild-de Sitter black and white hole embedded in an asymptotically \(\Lambda\) CDM cosmology, Phys. Rev. D, 84, Article 044045 pp. (2011)
[214] Nandra, R.; Lasenby, A. N.; Hobson, M. P., The effect of a massive object on an expanding universe, Mon. Not. R. Astron. Soc., 422, 2931 (2012)
[215] Nandra, R.; Lasenby, A. N.; Hobson, M. P., The effect of an expanding universe on massive objects, Mon. Not. R. Astron. Soc., 422, 2945 (2012)
[216] da Silva, A. M.; Fontanini, M.; Guariento, D. C., How the expansion of the universe determines the causal structure of McVittie space-times, Phys. Rev. D, 87, Article 064030 pp. (2013)
[217] Nolan, B. C., Particle and photon orbits in McVittie space-times, Classical Quantum Gravity, 31, Article 235008 pp. (2014) · Zbl 1306.83056
[218] Piattella, O. F., Lensing in the McVittie metric, Phys. Rev. D, 93, Article 024020 pp. (2016)
[219] Piattella, O. F., On the effect of the cosmological expansion on the gravitational lensing by a point mass, Universe, 2, 25 (2016)
[220] Nolan, B. C., Local properties and global structure of McVittie space-times with non-flat Friedmann-Lemaître-Robertson-Walker backgrounds, Classical Quantum Gravity, 34, Article 225002 pp. (2017) · Zbl 1380.83058
[221] Faraoni, V.; Lapierre-Léonard, M., Beyond lensing by the cosmological constant, Phys. Rev. D, 95, Article 023509 pp. (2017)
[222] Aghili, M. E.; Bolen, B.; Bombelli, L., Effect of accelerated global expansion on the bending of light, Gen. Relativity Gravitation, 49, 10 (2017) · Zbl 1367.83099
[223] Bakala, P.; Čermàk, P.; Hledík, S.; Stuchlík, Z.; Truparovà, K., A virtual trip to the Schwarzschild-de Sitter black hole (2006), arXiv:gr-qc/0612124
[224] Bakala, P.; Čermák, P.; Hledík, S.; Stuchlík, Z.; Truparová, K., Extreme gravitational lensing in vicinity of Schwarzschild-de Sitter black holes, Central Eur. J. Phys., 5, 599 (2007)
[225] Stuchlík, Z.; Charbulák, D.; Schee, J., Light escape cones in local reference frames of Kerr-de Sitter black hole space-times and related black hole shadows, Eur. Phys. J. C, 78, 180 (2018)
[226] Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S., First analytical calculation of black hole shadow in McVittie metric, Internat. J. Modern Phys. D, 29, Article 2050062 pp. (2020) · Zbl 1443.83029
[227] Roy, R.; Chakrabarti, S., Study on black hole shadows in asymptotically de Sitter space-times, Phys. Rev. D, 102, Article 024059 pp. (2020)
[228] Chang, Zhe; Zhu, Qing-Hua, Black hole shadow in the view of freely falling observers, J. Cosmol. Astropart. Phys., 06, 055 (2020) · Zbl 1492.83058
[229] Islam, J. N., The cosmological constant and classical tests of general relativity, Phys. Lett. A, 97, 239 (1983)
[230] Rindler, W.; Ishak, M., Contribution of the cosmological constant to the relativistic bending of light revisited, Phys. Rev. D, 76, Article 043006 pp. (2007)
[231] Hackmann, E.; Lämmerzahl, C., Complete analytic solution of the geodesic equation in Schwarzschild-(anti-)de Sitter space-times, Phys. Rev. Lett., 100, Article 171101 pp. (2008) · Zbl 1228.83023
[232] Hackmann, E.; Lämmerzahl, C., Geodesic equation in Schwarzschild-(anti-)de Sitter space-times: Analytical solutions and applications, Phys. Rev. D, 78, Article 024035 pp. (2008)
[233] Lebedev, D.; Lake, K., On the influence of the cosmological constant on trajectories of light and associated measurements in Schwarzschild de Sitter space (2013), arXiv:1308.4931
[234] Lebedev, D.; Lake, K., Relativistic aberration and the cosmological constant in gravitational lensing I: Introduction (2016), arXiv:1609.05183
[235] Jones, B. J.T., Precision Cosmology: The First Half Million Years (2017), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[236] Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu., Shadow of a black hole at cosmological distances, Phys. Rev. D, 98, Article 084020 pp. (2018)
[237] Li, P.-C.; Guo, M.; Chen, B., Shadow of a spinning black hole in an expanding universe, Phys. Rev. D, 101, Article 084041 pp. (2020)
[238] Riess, A. G.; Filippenko, A. V.; Challis, P., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009 (1998)
[239] Perlmutter, S.; Aldering, G.; Goldhaber, G., Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae, Astrophys. J., 517, 565 (1999) · Zbl 1368.85002
[240] Schutz, B. F., Determining the Hubble constant from gravitational wave observations, Nature, 323, 310 (1986)
[241] Holz, D. E.; Hughes, S. A., Using gravitational-wave standard sirens, Astrophys. J., 629, 15 (2005)
[242] Abbott, B. P.; Abbott, R.; Abbott, T. D., A gravitational-wave standard siren measurement of the Hubble constant, Nature, 551, 85 (2017)
[243] Tsupko, O. Yu.; Fan, Z.; Bisnovatyi-Kogan, G. S., Black hole shadow as a standard ruler in cosmology, Classical Quantum Gravity, 37, Article 065016 pp. (2020)
[244] Qi, J.-Zh.; Zhang, X., A new cosmological probe using super-massive black hole shadows, Chinese Phys. C, 44, Article 055101 pp. (2020)
[245] Vagnozzi, S.; Bambi, C.; Visinelli, L., Concerns regarding the use of black hole shadows as standard rulers, Classical Quantum Gravity, 37, Article 087001 pp. (2020)
[246] Eubanks, T. M., Anchored in shadows: Tying the celestial reference frame directly to black hole event horizons (2020), arXiv:2005.09122
[247] Breuer, R.; Ehlers, J., Propagation of high-frequency electromagnetic waves through a magnetized plasma in curved space-time. I, Proc. R. Soc. London A, 370, 389 (1980)
[248] Synge, J. L., Relativity: The General Theory (1960), North-Holland: North-Holland Amsterdam · Zbl 0090.18504
[249] Bičák, J.; Hadrava, P., General-relativistic radiative transfer theory in refractive and dispersive media, Astron. Astrophys., 44, 389 (1975)
[250] Kulsrud, R.; Loeb, A., Dynamics and gravitational interaction of waves in nonuniform media, Phys. Rev. D, 45, 525 (1992)
[251] Muhleman, D. O.; Johnston, I. D., Radio propagation in the solar gravitational field, Phys. Rev. Lett., 17, 455 (1966)
[252] Bliokh, P. V.; Minakov, A. A., Gravitational Lenses (in Russian) (1989), Naukova Dumka: Naukova Dumka Kiev
[253] Perlick, V., Ray Optics, Fermat’s Principle, and Applications To General Relativity (2000), Springer: Springer Berlin · Zbl 0964.83002
[254] Bisnovatyi-Kogan, G. S.; Yu. Tsupko, O., Gravitational radiospectrometer, Gravitation Cosmol., 15, 20 (2009) · Zbl 1177.83033
[255] Bisnovatyi-Kogan, G. S.; Yu. Tsupko, O., Gravitational lensing in a non-uniform plasma, Mon. Not. R. Astron. Soc., 404, 1790 (2010)
[256] Yu. Tsupko, O.; Bisnovatyi-Kogan, G. S., Gravitational lensing in plasma: Relativistic images at homogeneous plasma, Phys. Rev. D, 87, Article 124009 pp. (2013)
[257] Yan, H., Influence of a plasma on the observational signature of a high-spin Kerr black hole, Phys. Rev. D, 99, Article 084050 pp. (2019)
[258] Huang, Yang; Dong, Yi-Ping; Liu, Dao-Jun, Revisiting the shadow of a black hole in the presence of a plasma, Internat. J. Modern Phys. D, 27, Article 1850114 pp. (2018)
[259] Morozova, V. S.; Ahmedov, B. J.; Tursunov, A. A., Gravitational lensing by a rotating massive object in a plasma, Astrophys. Space Sci., 346, 513 (2013)
[260] Er, X.; Mao, S., Effects of plasma on gravitational lensing, Mon. Not. R. Astron. Soc., 437, 2180 (2014)
[261] Bisnovatyi-Kogan, G. S.; Yu. Tsupko, O., Gravitational lensing in plasmic medium, Plasma Phys. Rep., 41, 562 (2015)
[262] Rogers, A., Frequency-dependent effects of gravitational lensing within plasma, Mon. Not. R. Astron. Soc., 451, 17 (2015)
[263] Rogers, A., Escape and trapping of low-frequency gravitationally lensed rays by compact objects within plasma, Mon. Not. R. Astron. Soc., 465, 2151 (2017)
[264] Rogers, A., Gravitational lensing of rays through the levitating atmospheres of compact objects, Universe, 3, 3 (2017)
[265] Er, X.; Rogers, A., Two families of astrophysical diverging lens models, Mon. Not. R. Astron. Soc., 475, 867 (2018)
[266] Schulze-Koops, K.; Perlick, V.; Schwarz, D. J., Sachs equations for light bundles in a cold plasma, Classical Quantum Gravity, 34, Article 215006 pp. (2017) · Zbl 1380.83035
[267] Crisnejo, G.; Gallo, E., Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem, A unified treatment, Phys. Rev. D, 97, Article 124016 pp. (2018)
[268] Crisnejo, G.; Gallo, E.; Rogers, A., Finite distance corrections to the light deflection in a gravitational field with a plasma medium, Phys. Rev. D, 99, Article 124001 pp. (2019)
[269] Crisnejo, G.; Gallo, E.; Villanueva, J. R., Gravitational lensing in dispersive media and deflection angle of charged massive particles in terms of curvature scalars and energy-momentum tensor, Phys. Rev. D, 100, Article 044006 pp. (2019)
[270] Crisnejo, G.; Gallo, E.; Jusufi, K., Higher order corrections to deflection angle of massive particles and light rays in plasma media for stationary space-times using the Gauss-Bonnet theorem, Phys. Rev. D, 100, Article 104045 pp. (2019)
[271] Kimpson, T.; Wu, K.; Zane, S., Spatial dispersion of light rays propagating through a plasma in Kerr space-time, Mon. Not. R. Astron. Soc., 484, 2411 (2019)
[272] Kimpson, T.; Wu, K.; Zane, S., Pulsar timing in extreme mass ratio binaries: a general relativistic approach, Mon. Not. R. Astron. Soc., 486, 360 (2019)
[273] Sárený, M.; Balek, V., Effect of black hole-plasma system on light beams, Gen. Relativity Gravitation, 51, 141 (2019) · Zbl 1434.83019
[274] Matsuno, K., Light deflection by squashed Kaluza-Klein black holes in a plasma medium, Phys. Rev. D, 103, Article 044008 pp. (2021)
[275] Jin, Xing-Hua; Gao, Yuan-Xing; Liu, Dao-Jun, Strong gravitational lensing of a 4-dimensional Einstein-Gauss-Bonnet black hole in homogeneous plasma, Internat. J. Modern Phys. D, 29, Article 2050065 pp. (2020)
[276] Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S., Hills and holes in the microlensing light curve due to plasma environment around gravitational lens, Mon. Not. R. Astron. Soc., 491, 5636 (2020)
[277] Wagner, J.; Er, X., Plasma lensing in comparison to gravitational lensing – formalism and degeneracies (2020), arXiv:2006.16263
[278] Chowdhuri, A.; Bhattacharyya, A., Shadow analysis for rotating black holes in the presence of plasma for an expanding universe (2020), arXiv:2012.12914
[279] Li, Q.; Wang, T., Gravitational effect of a plasma on the shadow of Schwarzschild black holes (2020), arXiv:2102.00957
[280] Broderick, A.; Blandford, R., Covariant magnetoionic theory - I. Ray propagation, Mon. Not. R. Astron. Soc., 342, 1280 (2003)
[281] Broderick, A.; Blandford, R., Covariant magnetoionic theory - II. Radiative transfer, Mon. Not. R. Astron. Soc., 349, 994 (2004)
[282] Tsupko, O. Yu., Deflection of light rays by a spherically symmetric black hole in a dispersive medium, Phys. Rev. D, 103, Article 104019 pp. (2021)
[283] First M87 Event Horizon Telescope results. VIII. Magnetic field structure near the event horizon, Astrophys. J. Lett., 910, L13 (2021)
[284] Bisnovatyi-Kogan, G. S.; Ruzmaikin, A. A., The accretion of matter by a collapsing star in the presence of a magnetic field, Astrophys. Space Sci., 28, 45 (1974)
[285] Bisnovatyi-Kogan, G. S.; Ruzmaikin, A. A., The accretion of matter by a collapsing star in the presence of a magnetic field. II. Selfconsistent stationary picture, Astrophys. Space Sci., 42, 401 (1976)
[286] Igumenshchev, I. V.; Narayan, R.; Abramowicz, M. A., Three-dimensional magnetohydrodynamic simulations of radiatively inefficient accretion flows, Astrophys. J., 592, 1042 (2003)
[287] Narayan, R.; Igumenshchev, I. V.; Abramowicz, M. A., Magnetically Arrested Disk: an energetically efficient accretion flow, Publ. Astron. Soc. Japan, 55, L69 (2003)
[288] Bisnovatyi-Kogan, G. S., Accretion into black hole, and formation of magnetically arrested accretion disks, Universe, 5, 146 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.