×

A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. (English) Zbl 1349.76213

Summary: We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier-Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is unconditionally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the simple coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

Software:

FreeFem++

References:

[1] Kim, J.; Kang, K.; Lowengrub, J., Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193, 511-543 (2004) · Zbl 1109.76348
[2] Khatavkar, V. V.; Anderson, P. D.; Duineveld, P. C.; Meijer, H. E.H., Diffuse-interface modelling of droplet impact, J. Fluid Mech., 581, 97-127 (2007) · Zbl 1175.76047
[3] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci., 454, 2617-2654 (1998) · Zbl 0927.76007
[4] Hohenberg, P.; Halperin, B., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435-479 (1977)
[5] Gurtin, M. E.; Polignone, D.; Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6, 815-831 (1996) · Zbl 0857.76008
[6] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[7] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, Nonlinear Phenom., 179, 211-228 (2003) · Zbl 1092.76069
[8] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., 20, 175-212 (1999) · Zbl 0937.35123
[9] Zhang, T.; Wang, Q., Cahn-Hilliard vs singular Cahn-Hilliard equations in phase field modeling, Commun. Comput. Phys., 7, 362-382 (2010) · Zbl 1364.80013
[10] Barrett, J. W.; Blowey, J. F.; Garcke, H., Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37, 286-318 (1999), (electronic) · Zbl 0947.65109
[11] Ceniceros, H. D.; Garca-Cervera, C. J., A new approach for the numerical solution of diffusion equations with variable and degenerate mobility, J. Comput. Phys., 246, 1-10 (2013) · Zbl 1349.65275
[12] Eyre, D. J., Unconditionally gradient stable time marching the Cahn-Hilliard equation, (Computational and Mathematical Models of Microstructural Evolution. Computational and Mathematical Models of Microstructural Evolution, San Francisco, CA, 1998. Computational and Mathematical Models of Microstructural Evolution. Computational and Mathematical Models of Microstructural Evolution, San Francisco, CA, 1998, Mater. Res. Soc. Symp. Proc., vol. 529 (1998), MRS: MRS Warrendale, PA), 39-46
[13] Wise, S. M., Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput., 44, 38-68 (2010) · Zbl 1203.76153
[14] Collins, C.; Shen, J.; Wise, S. M., An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Commun. Comput. Phys., 13, 929-957 (2013) · Zbl 1373.76161
[15] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 6011-6045 (2006) · Zbl 1122.76072
[16] Shen, J., Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach, (Multiscale Modeling and Analysis for Materials Simulation. Multiscale Modeling and Analysis for Materials Simulation, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 22 (2012), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 147-195
[17] Feng, X., Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 1049-1072 (2006), (electronic) · Zbl 1344.76052
[18] Kay, D.; Styles, V.; Welford, R., Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound., 10, 15-43 (2008) · Zbl 1144.35043
[19] Minjeaud, S., An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, Numer. Methods Partial Differ. Equ., 29, 584-618 (2013) · Zbl 1364.76091
[20] Dong, S.; Shen, J., A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios, J. Comput. Phys., 231, 5788-5804 (2012) · Zbl 1277.76118
[21] Témam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II, Arch. Ration. Mech. Anal., 33, 377-385 (1969) · Zbl 0207.16904
[22] Hu, Z.; Wise, S. M.; Wang, C.; Lowengrub, J. S., Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228, 5323-5339 (2009) · Zbl 1171.82015
[23] Baskaran, A.; Lowengrub, J. S.; Wang, C.; Wise, S. M., Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 51, 2851-2873 (2013) · Zbl 1401.82046
[24] Shen, J.; Wang, C.; Wang, X.; Wise, S. M., Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50, 105-125 (2012) · Zbl 1247.65088
[25] Gomez, H.; Hughes, T. J.R., Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230, 5310-5327 (2011) · Zbl 1419.76439
[26] van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 870-891 (1986) · Zbl 0594.76023
[27] Shen, J., On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes, Math. Comput., 65, 1039-1065 (1996) · Zbl 0855.76049
[28] E, W.; Liu, J.-G., Projection method. I. Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32, 1017-1057 (1995) · Zbl 0842.76052
[29] Ingram, R., A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations, Math. Comput., 82, 1953-1973 (2013) · Zbl 1457.65115
[30] Zeidler, E., Nonlinear functional analysis and its applications. II/B, (Nonlinear Monotone Operators (1990), Springer-Verlag: Springer-Verlag New York), Translated from the German by the author and Leo F. Boron · Zbl 0684.47028
[31] Guermond, J.-L.; Quartapelle, L., On stability and convergence of projection methods based on pressure Poisson equation, Int. J. Numer. Methods Fluids, 26, 1039-1053 (1998) · Zbl 0912.76054
[32] Guermond, J.-L.; Quartapelle, L., On the approximation of the unsteady Navier-Stokes equations by finite element projection methods, Numer. Math., 80, 207-238 (1998) · Zbl 0914.76051
[33] Codina, R., Pressure stability in fractional step finite element methods for incompressible flows, J. Comput. Phys., 170, 112-140 (2001) · Zbl 1002.76063
[34] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 251-265 (2012) · Zbl 1266.68090
[35] Aland, S., Time integration for diffuse interface models for two-phase flow, J. Comput. Phys., 262, 58-71 (2014) · Zbl 1349.82065
[36] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Classics Appl. Math., vol. 40 (2002), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0999.65129
[37] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344 (1984) · Zbl 0593.76039
[38] Kohn, R. V.; Otto, F., Upper bounds on coarsening rates, Commun. Math. Phys., 229, 375-395 (2002) · Zbl 1004.82011
[39] Siggia, E. D., Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20, 595-605 (1979)
[40] San Miguel, M.; Grant, M.; Gunton, J. D., Phase separation in two-dimensional binary fluids, Phys. Rev. A, 31, 1001-1005 (1985)
[41] Otto, F.; Seis, C.; Slepčev, D., Crossover of the coarsening rates in demixing of binary viscous liquids, Commun. Math. Sci., 11, 441-464 (2013) · Zbl 1325.35091
[42] Han, D.; Sun, D.; Wang, X., Two-phase flows in karstic geometry, Math. Methods Appl. Sci., 37, 3048-3063 (2014) · Zbl 1309.76204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.