×

Probabilistic construction of Toda conformal field theories. (Construction probabiliste des théories conformes des champs de Toda.) (English. French summary) Zbl 1516.60006

Summary: Following the 1984 seminal work of A. A. Belavin et al. [Nucl. Phys., B 241, No. 2, 333–380 (1984; Zbl 0661.17013)] on two-dimensional conformal field theories, Toda conformal field theories were introduced in the physics literature as a family of two-dimensional conformal field theories that enjoy, in addition to conformal symmetry, an extended level of symmetry usually referred to as W-symmetry or higher-spin symmetry. More precisely Toda conformal field theories provide a natural way to associate to a finite-dimensional simple and complex Lie algebra a conformal field theory for which the algebra of symmetry contains the Virasoro algebra. In this document we use the path integral formulation of these models to provide a rigorous mathematical construction of Toda conformal field theories based on probability theory. By doing so we recover expected properties of the theory such as the Weyl anomaly formula with respect to the change of background metric by a conformal factor and the existence of Seiberg bounds for the correlation functions.

MSC:

60D05 Geometric probability and stochastic geometry
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
17B20 Simple, semisimple, reductive (super)algebras
17B68 Virasoro and related algebras

Citations:

Zbl 0661.17013

References:

[1] Arakawa, Tomoyuki; Callegaro, Filippo; Carnovale, Giovanna; Caselli, Fabrizio; De Concini, Corrado; De Sole, Alberto, Perspectives in Lie Theory, Introduction to W-Algebras and Their Representation Theory, 179-250 (2017), Springer · Zbl 1430.17082 · doi:10.1007/978-3-319-58971-8_4
[2] Borcherds, Richard, Vertex algebras, Kac-Moody algebras, and the Monster, Proceedings of the National Academy of Sciences of the United States of America, 83, 3068-3071 (1986) · Zbl 0613.17012 · doi:10.1073/pnas.83.10.3068
[3] Belavin, Aleksandr A.; Polyakov, Aleksandr M.; Zamolodchikov, Aleksandr B., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys., B, 241, 2, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[4] Cerclé, Baptiste; Huang, Yichao, Ward identities in the \(\mathfrak{sl}_3\) Toda field theory, Commun. Math. Phys., 393, 1, 419-475 (2022) · Zbl 1498.81114 · doi:10.1007/s00220-022-04370-5
[5] Ding, Jian; Dubédat, Julien; Dunlap, Alexander; Falconet, Hugo, Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\), Publ. Math., Inst. Hautes Étud. Sci., 132, 353-403 (2020) · Zbl 1455.82008 · doi:10.1007/s10240-020-00121-1
[6] Dubédat, Julien; Falconet, Hugo; Gwynne, Ewain; Pfeffer, Joshua; Sun, Xin, Weak LQG metrics and Liouville first passage percolation, Probab. Theory Relat. Fields, 178, 369-436 (2020) · Zbl 1469.60054 · doi:10.1007/s00440-020-00979-6
[7] David, François; Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent, Liouville Quantum Gravity on the Riemann Sphere, Commun. Math. Phys., 342, 869-907 (2016) · Zbl 1336.83042 · doi:10.1007/s00220-016-2572-4
[8] Duplantier, Bertrand; Miller, Scott Jason Sheffield, Liouville quantum gravity as a mating of trees, 427 (2021), Société Mathématique de France · Zbl 1503.60003
[9] Dorn, Harald; Otto, Hans-Jörg, Two- and three-point functions in Liouville theory, Nucl. Phys., B, 429, 2, 375-388 (1994) · Zbl 1020.81770 · doi:10.1016/0550-3213(94)00352-1
[10] David, François; Rhodes, Rémi; Vargas, Vincent, Liouville quantum gravity on complex tori, J. Math. Phys., 57, 2 (2016) · Zbl 1362.81082 · doi:10.1063/1.4938107
[11] Dubédat, Julien, SLE and the Free Field: partition functions and couplings, J. Am. Math. Soc., 22, 4, 995-1054 (2009) · Zbl 1204.60079 · doi:10.1090/S0894-0347-09-00636-5
[12] Freudenthal, Hans; de Vries, Hendrik, Linear lie groups, 35 (1969), Academic Press Inc. · Zbl 0377.22001
[13] Fateev, Vladimir A.; Lukyanov, Sergei L., The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry, Int. J. Mod. Phys. A, 3, 507 (1988) · doi:10.1142/S0217751X88000205
[14] Fateev, Vladimir A.; Litvinov, Alexey V., On differential equation on four-point correlation function in the Conformal Toda Field Theory, Jetp Lett., 81, 594-598 (2005) · doi:10.1134/1.2029952
[15] Frenkel, Igor; Lepowsky, James; Meurman, Arne, Vertex Operator Algebras and the Monster (1989), Academic Press Inc. · Zbl 0674.17001
[16] Fehér, László; O’Raifeartaigh, Lochlainn; Ruelle, Philippe; Tsutsui, Izumi; Wipf, Andreas, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rep., 222, 1, 1-64 (1992) · doi:10.1016/0370-1573(92)90026-V
[17] Fateev, Vladimir A.; Zamolodchikov, Aleksandr B., Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems, Sov. Phys., JETP, 62, 215-225 (1985)
[18] Fateev, Vladimir A.; Zamolodchikov, Aleksandr B., Conformal quantum field theory models in two dimensions having Z3 symmetry, Nucl. Phys., B, 280, 644-660 (1987) · doi:10.1016/0550-3213(87)90166-0
[19] Guillarmou, Colin; Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent, Conformal bootstrap in Liouville Theory (2020)
[20] Gervais, Jean-Loup; Matsuo, Yutaka, W geometries, Phys. Lett., B, 274, 3-4, 309-316 (1992) · doi:10.1016/0370-2693(92)91990-Q
[21] Gwynne, Ewain; Miller, Jason, Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\), Invent. Math., 223, 1, 213-333 (2021) · Zbl 1461.83018 · doi:10.1007/s00222-020-00991-6
[22] Guillarmou, Colin; Rhodes, Rémi; Vargas, Vincent, Polyakov’s formulation of \(2d\) bosonic string theory, Publ. Math., Inst. Hautes Étud. Sci., 130, 111-185 (2019) · Zbl 1514.81216 · doi:10.1007/s10240-019-00109-6
[23] Huang, Yichao; Rhodes, Rémi; Vargas, Vincent, Liouville quantum gravity on the unit disk, Ann. Inst. Henri Poincaré, Probab. Stat., 54, 3, 1694-1730 (2018) · Zbl 1404.60071 · doi:10.1214/17-AIHP852
[24] Humphreys, James, Introduction to Lie Algebras and Representation Theory, 9 (1972), Springer · Zbl 0254.17004 · doi:10.1007/978-1-4612-6398-2
[25] Jimbo, Michio; Miwa, Tetsuji; Okado, Masato, Solvable lattice models related to the vector representation of classical simple Lie algebras, Commun. Math. Phys., 116, 3, 507-525 (1988) · Zbl 0642.17016 · doi:10.1007/BF01229206
[26] Kahane, Jean-Pierre, Sur le chaos multiplicatif, Ann. Sci. Math. Qué., 105-150 (1985) · Zbl 0596.60041
[27] Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent, Local Conformal Structure of Liouville Quantum Gravity, Commun. Math. Phys., 371, 1005-1069 (2019) · Zbl 1480.83053 · doi:10.1007/s00220-018-3260-3
[28] Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent, Integrability of Liouville theory: proof of the DOZZ formula, Ann. Math., 191, 1, 81-166 (2020) · Zbl 1432.81055 · doi:10.4007/annals.2020.191.1.2
[29] Le Gall, Jean-François, Uniqueness and universality of the Brownian map, Ann. Probab., 41, 4, 2880-2960 (2013) · Zbl 1282.60014 · doi:10.1214/12-AOP792
[30] Lacoin, Hubert; Rhodes, Rémi; Vargas, Vincent, The semiclassical limit of Liouville conformal field theory, Ann. Fac. Sci. Toulouse, Math. (6), 31, 4, 1031-1083 (2022) · Zbl 1513.81115 · doi:10.5802/afst.1713
[31] Leznov, Andreĭ N.; Saveliev, Mikhail V., Representation of zero curvature for the system of nonlinear partial differential equations \(x_{\alpha ,z\bar{z}}=\exp (kx)_\alpha\) and its integrability, Lett. Math. Phys., 3, 489-494 (1979) · Zbl 0415.35017 · doi:10.1007/BF00401930
[32] Miermont, Grégory, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., 210, 2, 319-401 (2013) · Zbl 1278.60124 · doi:10.1007/s11511-013-0096-8
[33] Osgood, Brad; Phillips, Ralph; Sarnak, Peter, Extremals of determinants of Laplacians, J. Funct. Anal., 80, 1, 148-211 (1988) · Zbl 0653.53022 · doi:10.1016/0022-1236(88)90070-5
[34] Polyakov, Aleksandr M., Quantum Geometry of bosonic strings, Phys. Lett., B, 103, 20-210 (1981) · doi:10.1016/0370-2693(81)90743-7
[35] Rhodes, Rémi; Vargas, Vincent, Gaussian multiplicative chaos and applications: A review, Probab. Surv., 11, 315-392 (2014) · Zbl 1316.60073 · doi:10.1214/13-PS218
[36] Revuz, Daniel; Yor, Marc, Continuous Martingales and Brownian Motion (1991), Springer · Zbl 0731.60002 · doi:10.1007/978-3-662-21726-9
[37] Schramm, Oded, Selected works of Oded Schramm. Volumes 1, 2, Scaling limits of loop-erased random walks and uniform spanning trees, 791-858 (2011), Springer · Zbl 1248.01043 · doi:10.1007/978-1-4419-9675-6_27
[38] Seiberg, Nathan, Common trends in mathematics and quantum field theories, 102, Notes on Quantum Liouville Theory and Quantum Gravity, 319-349 (1990), Yukawa Institute for Theoretical Physics · Zbl 0790.53059 · doi:10.1143/PTP.102.319
[39] Sheffield, Scott, Gaussian free field for mathematicians, Probab. Theory Relat. Fields, 139, 521-541 (2007) · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
[40] Zamolodchikov, Alexeĭ B., Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys., 65, 3, 1205-1213 (1985) · doi:10.1007/BF01036128
[41] Zamolodchikov, Aleksandr B.; Zamolodchikov, Alexeĭ B., Conformal bootstrap in Liouville field theory, Nucl. Phys., B, 477, 2, 577-605 (1996) · Zbl 0925.81301 · doi:10.1016/0550-3213(96)00351-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.