×

Discrete second-order Ablowitz-Kaup-Newell-Segur equation and its modified form. (English. Russian original) Zbl 1515.37083

Theor. Math. Phys. 210, No. 3, 304-326 (2022); translation from Teor. Mat. Fiz. 210, No. 3, 350-374 (2022).
Summary: By introducing shift relations satisfied by a matrix \(\boldsymbol{r} \), we propose a generalized Cauchy matrix scheme and construct a discrete second-order Ablowitz-Kaup-Newell-Segur equation. A modified form of this equation is given. By applying an appropriate skew continuum limit, we obtain the semi-discrete counterparts of these two discrete equations; in the full continuum limit, we derive continuous nonlinear equations. Solutions, including soliton solutions, Jordan-block solutions, and mixed solutions, of the resulting discrete, semi-discrete, and continuous Ablowitz-Kaup-Newell-Segur-type equations are presented. The reductions to discrete, semi-discrete, and continuous nonlinear Schrödinger equations and modified nonlinear Schrödinger equation are also discussed.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
39A36 Integrable difference and lattice equations; integrability tests
39A14 Partial difference equations
Full Text: DOI

References:

[1] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., Nonlinear-evolution equations in physical significance, Phys. Rev. Lett., 31, 125-127 (1973) · Zbl 1243.35143 · doi:10.1103/PhysRevLett.31.125
[2] Ablowitz, M. J.; Ladik, F. J., A nonlinear difference scheme and inverse scattering, Stud. Appl. Math., 55, 213-229 (1976) · Zbl 0338.35002 · doi:10.1002/sapm1976553213
[3] Ablowitz, M. J.; Ladik, F. J., On the solution of a class of nonlinear partial difference equations, Stud. Appl. Math., 57, 1-12 (1977) · Zbl 0384.35018 · doi:10.1002/sapm19775711
[4] Tsuchida, T., Integrable discretization of coupled nonlinear Schrödinger equations, Rep. Math. Phys., 46, 269-278 (2000) · Zbl 0987.37068 · doi:10.1016/S0034-4877(01)80032-X
[5] Konopelchenko, B. G., Elementary Bäcklund transformations, nonlinear superposition principle and solutions of the integrable equations, Phys. Lett. A, 87, 445-448 (1982) · doi:10.1016/0375-9601(82)90754-X
[6] Willox, R.; Hattori, M., Discretisations of constrained KP hierarchies, J. Math. Sci. Univ. Tokyo, 22, 613-661 (2015) · Zbl 1339.37062
[7] Cao, C. W.; Zhang, G. Y., Integrable symplectic maps associated with the ZS-AKNS spectral problem, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1387.37069 · doi:10.1088/1751-8113/45/26/265201
[8] Hirota, R., Discretization of coupled modified KdV equations, Chaos Solitons Fractals, 11, 77-84 (2000) · Zbl 1115.37345 · doi:10.1016/S0960-0779(98)00270-7
[9] Yu, G. F., Discrete analogues of a negative order AKNS equation, Stud. Appl. Math., 135, 117-138 (2015) · Zbl 1334.35306 · doi:10.1111/sapm.12082
[10] Quispel, G. R. W.; Nijhoff, F. W.; Capel, H. W.; Linden, J. van der, Linear integral equations and nonlinear difference-difference equations, Phys. A, 125, 344-380 (1984) · Zbl 0598.45009 · doi:10.1016/0378-4371(84)90059-1
[11] Walker, A. J., Similarity reductions and integrable lattice equations (2001), Leeds University
[12] Nijhoff, F. W.; Atkinson, J.; Hietarinta, J., Soliton solutions for ABS lattice equations: I. Cauchy matrix approach, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1184.35281 · doi:10.1088/1751-8113/42/40/404005
[13] Hietarinta, J.; Joshi, N.; Nijhoff, F. W., Discrete Systems and Integrability (2016), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1362.37130 · doi:10.1017/CBO9781107337411
[14] Zhang, D. J.; Zhao, S. L., Solutions to ABS lattice equations via generalized Cauchy matrix approach, Stud. Appl. Math., 131, 72-103 (2013) · Zbl 1338.37113 · doi:10.1111/sapm.12007
[15] Sylvester, J., Sur l’équation en matrices \(px=xq\), C. R. Acad. Sci. Paris, 99, 67-71 (1884) · JFM 16.0108.03
[16] Xu, D. D.; Zhang, D. J.; Zhao, S. L., The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sine-Gordon equation, J. Nonlinear Math. Phys., 21, 382-406 (2014) · Zbl 1420.35299 · doi:10.1080/14029251.2014.936759
[17] Zhao, S. L., A discrete negative AKNS equation: generalized Cauchy matrix approach, J. Nonlinear Math. Phys., 23, 544-562 (2016) · Zbl 1420.39008 · doi:10.1080/14029251.2016.1237201
[18] Zhao, S. L.; Shi, Y., Discrete and semidiscrete models for AKNS equation, Z. Naturforsch. A, 72, 281-290 (2017) · doi:10.1515/zna-2016-0443
[19] Zhao, S. L., Discrete potential Ablowitz-Kaup-Newell-Segur equation, J. Differ. Equ. Appl., 25, 1134-1148 (2019) · Zbl 1423.39014 · doi:10.1080/10236198.2019.1662410
[20] Zhao, S. L., The Sylvester equation and integrable equations: The Ablowitz-Kaup- Newell- Segur system, Rep. Math. Phys., 82, 241-263 (2018) · Zbl 1441.37077 · doi:10.1016/S0034-4877(18)30087-9
[21] Nijhoff, F. W.; Quispel, G. R. W.; Linden, J. van der; Capel, H. W., On some linear integral equations generating solutions of nonlinear partial differential equations, Phys. A, 119, 101-142 (1983) · Zbl 0511.35074 · doi:10.1016/0378-4371(83)90150-4
[22] Nijhoff, F., On some ‘Schwarzian equations’ and their discrete analogues, Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, 26, 237-260 (1997) · Zbl 0867.35098 · doi:10.1007/978-1-4612-2434-1_12
[23] Quispel, G. R. W.; Capel, H. W., The nonlinear Schrödinger equation and the anisotropic Heisenberg spin chain, Phys. Lett. A, 88, 371-374 (1982) · doi:10.1016/0375-9601(82)90618-1
[24] Zhao, S. L.; Feng, W.; Jin, Y. Y., Discrete analogues for two nonlinear Schrödinger type equations, Commun. Nonlinear Sci. Numer. Simul., 72, 329-341 (2019) · Zbl 1464.39017 · doi:10.1016/j.cnsns.2019.01.003
[25] Starke, G.; Niethammer, W., SOR for \(\mathbf{A}\mathbf{X}-\mathbf{X}\mathbf{B}=\mathbf{C} \), Linear Algebra Appl., 154-156, 355-375 (1991) · Zbl 0736.65031 · doi:10.1016/0024-3795(91)90384-9
[26] Zhang, D. J.; Zhao, S. L.; Nijhoff, F. W., Direct linearization of extended lattice BSQ systems, Stud. Appl. Math., 129, 220-248 (2012) · Zbl 1256.35188 · doi:10.1111/j.1467-9590.2012.00552.x
[27] Zhao, S. L.; Feng, W.; Shen, S. F.; Shi, Y., Extended lattice Gel’fand-Dikii type hierarchies and solutions, Sci. Sin. Math., 47, 291-312 (2017) · Zbl 1499.35547 · doi:10.1360/012016-27
[28] D. J. Zhang, “Notes on solutions in Wronskian form to soliton equations: KdV-type,” arXiv: nlin.SI/0603008.
[29] Zhang, D. J.; Zhao, S. L.; Sun, Y. Y.; Zhou, J., Solutions to the modified Korteweg-de Vries equation, Rev. Math. Phys., 26 (2014) · Zbl 1341.37049 · doi:10.1142/S0129055X14300064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.