×

Solutions to ABS lattice equations via generalized Cauchy matrix approach. (English) Zbl 1338.37113

Summary: The usual Cauchy matrix approach starts from a known plain wave factor vector \(\mathbf{r}\) and known dressed Cauchy matrix \(\mathbf{M}\). In this paper, we start from a determining matrix equation set with undetermined \(\mathbf{r}\) and \(\mathbf{M}\). From the determining equation set we can build shift relations for some defined scalar functions and then derive lattice equations. The determining equation set admits more choices for \(\mathbf{r}\) and \(\mathbf{M}\) and in the paper we give explicit formulae for all possible \(\mathbf{r}\) and \(\mathbf{M}\). As applications, we get more solutions than usual multisoliton solutions for many lattice equations including the lattice potential KdV equation, the lattice potential modified KdV equation, the lattice Schwarzian KdV equation, NQC equation, and some lattice equations in ABS list.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
39A12 Discrete version of topics in analysis

References:

[1] F. W.Nijhoff and A. J.Walker, The discrete and continuous Painlevé VI hierarchy and the Garnier systems, Glasgow Math. J.43A: 109-123 (2001). · Zbl 0990.39015
[2] A. I.Bobenko and Y. B.Suris, Integrable systems on quad‐graphs, Intl. Math. Res. Notices 201111:573-611 (2002). · Zbl 1004.37053
[3] V. E.Adler, A. I.Bobenko, and Y. B.Suris, Classification of integrable equations on quad‐graphs, the consistency approach, Commun. Math. Phys.233: 513-543 (2003). · Zbl 1075.37022
[4] J.Atkinson, J.Hietarinta, and F. W.Nijhoff, Seed and soliton solutions for Adler’s lattice equation, J. Phys. A: Math. Theor.40: F1-F8 (2007). · Zbl 1106.37048
[5] J.Hietarinta and D. J.Zhang, Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization, J. Phys. A: Math. Theor.42:404006 (30pp) (2009). · Zbl 1184.35276
[6] J.Atkinson, J.Hietarinta, and F. W.Nijhoff, Soliton solutions for Q3, J. Phys. A: Math. Theor.41:142001 (11pp) (2008). · Zbl 1136.37036
[7] F. W.Nijhoff, J.Atkinson, and J.Hietarinta, Soliton solutions for ABS lattice equations: I. Cauchy matrix approach, J. Phys. A: Math. Theor.42:404005 (34pp) (2009). · Zbl 1184.35281
[8] F. W.Nijhoff, G. R. W.Quispel, and H. W.Capel, Direct linearization of nonlinear difference‐difference equations, Phys. Lett. A97: 125-128 (1983).
[9] J.Atkinson and F. W.Nijhoff, A constructive approach to the soliton solutions of integrable quadrilateral lattice equations, Commun. Math. Phys.299: 283-304 (2010). · Zbl 1198.35205
[10] F. W.Nijhoff and J.Atkinson, Elliptic N‐soliton solutions of ABS lattice equations, Int. Math. Res. Notices20:3837-3895 (2010). · Zbl 1217.37068
[11] S.Butler and N.Joshi, An inverse scattering transform for the lattice potential KdV equation, Inver. Prob.26:115012 (28pp) (2010). · Zbl 1204.35144
[12] S.Butler, Multidimensional inverse scattering of integrable lattice equations, Nonlinearity25:1613-1634 (2012). · Zbl 1251.39003
[13] C. W.Cao and X. X.Xu, A finite genus solution of the H1 model, J. Phys. A: Math. Theor.45:055213 (13pp) (2012). · Zbl 1234.35216
[14] C. W.Cao and G. Y.Zhang, A finite genus solution of the Hirota equation via integrable symplectic maps, J. Phys. A: Math. Theor.45:095203 (25pp) (2012). · Zbl 1248.37062
[15] G. R. W.Quispel, F. W.Nijhoff, H. W.Capel, and J.van derLinden, Linear integral equations and nonlinear difference‐difference equations, Physica A125:344-380 (1984). · Zbl 0598.45009
[16] F. W.Nijhoff, Advanced Discrete Systems and Integrablity, MATH5492, preprint (2011).
[17] J.Hietarinta, Searching for CAC‐maps, J. Nonlinear Math. Phys.12(Suppl. 2):223-230 (2005). · Zbl 1091.37020
[18] D. J.Zhang, Notes on solutions in Wronskian form to soliton equations: KdV‐type, Available at: arXiv:nlin.SI/0603008. (2006).
[19] J.Hietarinta and D. J.Zhang, Multisoliton solutions to the lattice Boussinesq equation, J. Math. Phys.51:033505 (12pp) (2010). · Zbl 1309.35005
[20] D. J.Zhang and J.Hietarinta, Generalized solutions for the H1 model in ABS list of lattice equations, in Proceedings of the First International Workshop on Nonlinear Modern Math. Phys., AIP Conference Proceedings 1212 (W. X.Ma (ed.), X. B.Hu (ed.), Q. P.Liu (ed.), Eds.), 154-161 (2010). · Zbl 1214.81176
[21] Y.Shi and D. J.Zhang, Rational solutions of the H3 and Q1 models in the ABS lattice list, SIGMA7:046 (11pp) (2011). · Zbl 1218.37094
[22] A. J.Walker, Similarity reductions and integrable Lattice equations, PhD Thesis, University of Leeds (2001).
[23] A.Tongas and F. W.Nijhoff, The Boussinesq integrable system. Compatible lattice and continuum structures, Glasgow Math. J.47A:205-219 (2005). · Zbl 1085.35125
[24] S. L.Zhao, D. J.Zhang, and Y.Shi, Generalized Cauchy matrix approach for lattice Boussinesq‐type equations, Chin. Ann. Math.33B:259-270 (2012).
[25] W.Feng, S. L.Zhao, and D. J.Zhang, Exact solutions to lattice Boussinesq‐type equations, J. Nonlin. Math. Phys.19:1250032 (15pp) (2012). · Zbl 1262.39012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.