Skip to main content
Log in

Discrete second-order Ablowitz–Kaup–Newell–Segur equation and its modified form

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

By introducing shift relations satisfied by a matrix \(\boldsymbol{r}\), we propose a generalized Cauchy matrix scheme and construct a discrete second-order Ablowitz���Kaup–Newell–Segur equation. A modified form of this equation is given. By applying an appropriate skew continuum limit, we obtain the semi-discrete counterparts of these two discrete equations; in the full continuum limit, we derive continuous nonlinear equations. Solutions, including soliton solutions, Jordan-block solutions, and mixed solutions, of the resulting discrete, semi-discrete, and continuous Ablowitz–Kaup–Newell–Segur-type equations are presented. The reductions to discrete, semi-discrete, and continuous nonlinear Schrödinger equations and modified nonlinear Schrödinger equation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The dAKNS equation (3.14) is different from the one introduced in [10]. That equation can be deduced from the shift relations of the variable \( \boldsymbol{S} (a,b)= \,^t {\boldsymbol{c}} (b \boldsymbol{I} + \boldsymbol{K} )^{-1}( \boldsymbol{I} + \boldsymbol{M} )^{-1}(a \boldsymbol{I} + \boldsymbol{K} )^{-1} \boldsymbol{r} \) with \(a,b \in \mathbb{C}\).

References

  1. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Nonlinear-evolution equations in physical significance,” Phys. Rev. Lett., 31, 125–127 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. J. Ablowitz and F. J. Ladik, “A nonlinear difference scheme and inverse scattering,” Stud. Appl. Math., 55, 213–229 (1976).

    Article  MathSciNet  Google Scholar 

  3. M. J. Ablowitz and F. J. Ladik, “On the solution of a class of nonlinear partial difference equations,” Stud. Appl. Math., 57, 1–12 (1977).

    Article  MathSciNet  Google Scholar 

  4. T. Tsuchida, “Integrable discretization of coupled nonlinear Schrödinger equations,” Rep. Math. Phys., 46, 269–278 (2000); arXiv: nlin/0002048.

    Article  ADS  MathSciNet  Google Scholar 

  5. B. G. Konopelchenko, “Elementary Bäcklund transformations, nonlinear superposition principle and solutions of the integrable equations,” Phys. Lett. A, 87, 445–448 (1982).

    Article  ADS  Google Scholar 

  6. R. Willox and M. Hattori, “Discretisations of constrained KP hierarchies,” J. Math. Sci. Univ. Tokyo, 22, 613–661 (2015); arXiv: 1406.5828.

    MathSciNet  MATH  Google Scholar 

  7. C. W. Cao and G. Y. Zhang, “Integrable symplectic maps associated with the ZS-AKNS spectral problem,” J. Phys. A: Math. Theor., 45, 265201, 15 pp. (2012).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Hirota, “Discretization of coupled modified KdV equations,” Chaos Solitons Fractals, 11, 77–84 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. F. Yu, “Discrete analogues of a negative order AKNS equation,” Stud. Appl. Math., 135, 117–138 (2015).

    Article  MathSciNet  Google Scholar 

  10. G. R. W. Quispel, F. W. Nijhoff, H. W. Capel, and J. van der Linden, “Linear integral equations and nonlinear difference-difference equations,” Phys. A, 125, 344–380 (1984).

    Article  MathSciNet  Google Scholar 

  11. A. J. Walker, Similarity reductions and integrable lattice equations (Ph.D. thesis), Leeds University (2001).

    Google Scholar 

  12. F. W. Nijhoff, J. Atkinson, and J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach,” J. Phys. A: Math. Theor., 42, 404005, 34 pp. (2009).

    Article  MathSciNet  Google Scholar 

  13. J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge (2016).

    Book  Google Scholar 

  14. D. J. Zhang and S. L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach,” Stud. Appl. Math., 131, 72–103 (2013).

    Article  MathSciNet  Google Scholar 

  15. J. Sylvester, “Sur l’équation en matrices \(px=xq\),” C. R. Acad. Sci. Paris, 99, 67–71 (1884).

    MATH  Google Scholar 

  16. D. D. Xu, D. J. Zhang, and S. L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation,” J. Nonlinear Math. Phys., 21, 382–406 (2014).

    Article  MathSciNet  Google Scholar 

  17. S. L. Zhao, “A discrete negative AKNS equation: generalized Cauchy matrix approach,” J. Nonlinear Math. Phys., 23, 544–562 (2016).

    Article  MathSciNet  Google Scholar 

  18. S. L. Zhao and Y. Shi, “Discrete and semidiscrete models for AKNS equation,” Z. Naturforsch. A, 72, 281–290 (2017).

    Article  ADS  Google Scholar 

  19. S. L. Zhao, “Discrete potential Ablowitz–Kaup–Newell–Segur equation,” J. Differ. Equ. Appl., 25, 1134–1148 (2019).

    Article  MathSciNet  Google Scholar 

  20. S. L. Zhao, “The Sylvester equation and integrable equations: The Ablowitz–Kaup– Newell– Segur system,” Rep. Math. Phys., 82, 241–263 (2018).

    Article  MathSciNet  Google Scholar 

  21. F. W. Nijhoff, G. R. W. Quispel, J. van der Linden, and H. W. Capel, “On some linear integral equations generating solutions of nonlinear partial differential equations,” Phys. A, 119, 101–142 (1983).

    Article  MathSciNet  Google Scholar 

  22. F. Nijhoff, “On some ‘Schwarzian equations’ and their discrete analogues,” in: Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman (Progress in Nonlinear Differential Equations and Their Applications, Vol. 26, A. S. Fokas and I. M. Gel’fand, eds.), Birkhäuser, Boston, MA (1997), pp. 237–260.

    Article  MathSciNet  Google Scholar 

  23. G. R. W. Quispel and H. W. Capel, “The nonlinear Schrödinger equation and the anisotropic Heisenberg spin chain,” Phys. Lett. A, 88, 371–374 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. L. Zhao, W. Feng, and Y. Y. Jin, “Discrete analogues for two nonlinear Schrödinger type equations,” Commun. Nonlinear Sci. Numer. Simul., 72, 329–341 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Starke and W. Niethammer, “SOR for \(\mathbf{A}\mathbf{X}-\mathbf{X}\mathbf{B}=\mathbf{C}\),” Linear Algebra Appl., 154–156, 355–375 (1991).

    Article  Google Scholar 

  26. D. J. Zhang, S. L. Zhao, and F. W. Nijhoff, “Direct linearization of extended lattice BSQ systems,” Stud. Appl. Math., 129, 220–248 (2012).

    Article  MathSciNet  Google Scholar 

  27. S. L. Zhao, W. Feng, S. F. Shen, and Y. Shi, “Extended lattice Gel’fand–Dikii type hierarchies and solutions,” Sci. Sin. Math., 47, 291–312 (2017).

    Article  ADS  Google Scholar 

  28. D. J. Zhang, “Notes on solutions in Wronskian form to soliton equations: KdV-type,” arXiv: nlin.SI/0603008.

  29. D. J. Zhang, S. L. Zhao, Y. Y. Sun, and J. Zhou, “Solutions to the modified Korteweg–de Vries equation,” Rev. Math. Phys., 26, 14300064, 42 pp. (2014).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to the referees for the invaluable and expert comments.

Funding

This project is supported by the National Natural Science Foundation of China (No. 12071432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Lin Zhao.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 350-374 https://doi.org/10.4213/tmf10159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhao, SL. & Shi, Y. Discrete second-order Ablowitz–Kaup–Newell–Segur equation and its modified form. Theor Math Phys 210, 304–326 (2022). https://doi.org/10.1134/S0040577922030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922030023

Keywords

Navigation