×

Boundedness in a higher-dimensional singular chemotaxis-growth system with indirect signal production. (English) Zbl 1515.35282

Summary: In this paper, we consider a higher-dimensional singular chemotaxis-growth system with indirect signal production. Under appropriate regularity assumption on the initial data, the global boundedness of classical solution is obtained. Our results improve and complement previously known ones.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B40 Asymptotic behavior of solutions to PDEs
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Ahn, J.; Kang, K.; Lee, J., Eventual smoothness and stabilization of global weak solutions in parabolic-elliptic chemotaxis systems with logarithmic sensitivity, Nonlinear Anal. Real World Appl., 49, 312-330 (2019) · Zbl 1437.35060 · doi:10.1016/j.nonrwa.2019.03.012
[2] Ahn, J.; Kang, K.; Lee, J., Global well-posedness of logarithmic Keller-Segel type systems, J. Differ. Equ., 287, 185-211 (2021) · Zbl 1464.35348 · doi:10.1016/j.jde.2021.03.053
[3] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci, 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[4] Biler, P., Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9, 347-359 (1999) · Zbl 0941.35009
[5] Black, T., Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity, Discrete Contin. Dyn. Syst. S, 13, 2, 119-137 (2020) · Zbl 1439.35486 · doi:10.3934/dcdss.2020007
[6] Chaplain, M.; Stuart, A., Amodel mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA. J. Math. Appl. Med. Biol., 10, 149-168 (1993) · Zbl 0783.92019 · doi:10.1093/imammb/10.3.149
[7] Ding, M.; Wang, W.; Zhou, S., Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real Word Appl., 49, 286-311 (2019) · Zbl 1437.35118 · doi:10.1016/j.nonrwa.2019.03.009
[8] Dong, Y.; Peng, Y., Global boundedness in the higher-dimensional chemotaxis system with indirect signal production and rotational flux, Appl. Math. Lett., 112 (2021) · Zbl 1453.35113 · doi:10.1016/j.aml.2020.106700
[9] Friedman, A., Partial Differential Equations (1969), New York: Rinehart & Winston Holt, New York · Zbl 0224.35002
[10] Fujie, K., Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424, 675-684 (2015) · Zbl 1310.35144 · doi:10.1016/j.jmaa.2014.11.045
[11] Fujie, K.; Senba, T., Application of an Adams type inequality to a two-chemical substance chemotaxis system, J. Differ. Equ., 263, 88-148 (2017) · Zbl 1364.35120 · doi:10.1016/j.jde.2017.02.031
[12] Fujie, K.; Senba, T., A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system, Nonlinearity, 31, 1639-1672 (2018) · Zbl 1397.35122 · doi:10.1088/1361-6544/aaa2df
[13] Fujie, K.; Winkler, M.; Yokota, T., Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109, 56-71 (2014) · Zbl 1297.35051 · doi:10.1016/j.na.2014.06.017
[14] Fujie, K.; Winkler, M.; Yokota, T., Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38, 1212-1224 (2015) · Zbl 1329.35011 · doi:10.1002/mma.3149
[15] Fujie, K.; Yokota, T., Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity, Appl. Math. Lett., 38, 140-143 (2014) · Zbl 1354.92009 · doi:10.1016/j.aml.2014.07.021
[16] He, Q.; Zhao, J.; Xiao, M., Large time behavior of solution to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 69 (2023) · Zbl 1501.35060 · doi:10.1016/j.nonrwa.2022.103746
[17] Hillen, T.; Painter, KJ, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 1, 165-198 (2013) · Zbl 1263.35204 · doi:10.1142/S0218202512500480
[18] \(H \ddot{o}\) fer, H., Sherratt, J., Maini, P.: Cellular pattern formation during Dictyostelium aggregation. Phys. D 85, 425-444 (1995) · Zbl 0888.92005
[19] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[20] Hu, B.; Tao, Y., To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26, 2111-2128 (2016) · Zbl 1351.35076 · doi:10.1142/S0218202516400091
[21] Keller, E.; Segel, L., Initiation of slime mold aagregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[22] Keller, E.; Segel, L., Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30, 2, 235-248 (1971) · Zbl 1170.92308 · doi:10.1016/0022-5193(71)90051-8
[23] Kurt, HI; Shen, W., Finite-time blow-up prevention by logistic source in chemotaxis models with singular sensitivity in any dimensional setting, SIAM J. Math. Anal., 53, 1, 973-1003 (2021) · Zbl 1455.35269 · doi:10.1137/20M1356609
[24] Lankeit, J., A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39, 394-404 (2016) · Zbl 1333.35100 · doi:10.1002/mma.3489
[25] Lankeit, J.; Winkler, M., A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data, Nonlinear Differ. Equ. Appl., 24, 49 (2017) · Zbl 1373.35166 · doi:10.1007/s00030-017-0472-8
[26] Li, H.; Tao, Y., Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77, 108-113 (2018) · Zbl 1503.92021 · doi:10.1016/j.aml.2017.10.006
[27] Liu, C.; Liu, B., Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst. B, 27, 9, 4855-4874 (2022) · Zbl 1495.35035 · doi:10.3934/dcdsb.2021255
[28] Liu, C.; Liu, B., Boundedness in a quasilinear two-species chemotaxis system with nonlinear sensitivity and nonlinear signal secretion, J. Differ. Equ., 320, 206-246 (2022) · Zbl 1486.35087 · doi:10.1016/j.jde.2022.03.004
[29] Liu, Y.; Li, Z.; Huang, J., Global boundedness and large time behavior of a chemotaxis system with indirect signal absorption, J. Differ. Equ., 269, 6365-6399 (2020) · Zbl 1441.35138 · doi:10.1016/j.jde.2020.05.008
[30] Mizukami, M.; Yokota, T., A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, Math. Nachr., 290, 2648-2660 (2017) · Zbl 1379.35162 · doi:10.1002/mana.201600399
[31] Murray, J., Mathematical Biology I: An Introduction (2002), Berlin: Springer, Berlin · Zbl 1006.92001 · doi:10.1007/b98868
[32] Nagai, T.; Senba, T., Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8, 145-156 (1998) · Zbl 0902.35010
[33] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40, 411-433 (1997) · Zbl 0901.35104
[34] Petter, G.; Byrne, H.; Mcelwain, D.; Norbury, J., A model of wound healing and angiogenesis in soft tissue, Math. Biosci., 136, 35-63 (2003) · Zbl 0860.92020 · doi:10.1016/0025-5564(96)00044-2
[35] Ren, G.; Liu, B., A new result for global solvability in a singular chemotaxis-growth system with indirect signal production, J. Differ. Equ., 337, 363-394 (2022) · Zbl 1497.35054 · doi:10.1016/j.jde.2022.07.044
[36] Ren, G.; Liu, B., Boundedness in a chemotaxis system under a critical parameter condition, Bull. Braz. Math. Soc. New Ser., 52, 281-289 (2021) · Zbl 1469.35112 · doi:10.1007/s00574-020-00202-z
[37] Senba, K.; Senba, T., Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differ. Equ., 263, 88-148 (2017) · Zbl 1364.35120 · doi:10.1016/j.jde.2017.02.031
[38] Stinner, C.; Winkler, M., Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real Word Appl., 12, 3727-3740 (2011) · Zbl 1268.35072
[39] Tao, Y.; Winkler, M., Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19, 3641-3678 (2017) · Zbl 1406.35068 · doi:10.4171/JEMS/749
[40] Tao, Y.; Winkler, M., Persistence of mass in a chemotaxis system with logistic source, J. Differ. Equ., 259, 6142-6161 (2015) · Zbl 1321.35084 · doi:10.1016/j.jde.2015.07.019
[41] Tian, Y.; Li, D.; Mu, C., Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production, C. R. Acad. Sci. Paris Ser. Math., 357, 513-519 (2019) · Zbl 1418.35219 · doi:10.1016/j.crma.2019.05.010
[42] Viglialoro, G., Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal. Real World Appl., 34, 520-535 (2017) · Zbl 1355.35094 · doi:10.1016/j.nonrwa.2016.10.001
[43] Viglialoro, G.; Woolley, T., Eventual smoothness and asymptotic behavior of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Contin. Dyn. Syst. B, 23, 8, 3023-3045 (2018) · Zbl 1409.35046
[44] Winkler, M., Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283, 1664-1673 (2010) · Zbl 1205.35037 · doi:10.1002/mana.200810838
[45] Winkler, M., Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[46] Winkler, M., Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities, Discrete Contin. Dyn. Syst. B, 27, 11, 6565-6587 (2022) · Zbl 1503.35051 · doi:10.3934/dcdsb.2022009
[47] Winkler, M., Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384, 261-272 (2011) · Zbl 1241.35028 · doi:10.1016/j.jmaa.2011.05.057
[48] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 1516-1537 (2010) · Zbl 1290.35139 · doi:10.1080/03605300903473426
[49] Winkler, M., Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348, 2, 708-729 (2008) · Zbl 1147.92005 · doi:10.1016/j.jmaa.2008.07.071
[50] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[51] Winkler, M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34, 176-190 (2011) · Zbl 1291.92018 · doi:10.1002/mma.1346
[52] Winkler, M., Unlimited growth in logarithmic Keller-Segel systems, J. Differ. Equ., 309, 74-97 (2022) · Zbl 1480.35383 · doi:10.1016/j.jde.2021.11.026
[53] Winkler, M.; Yokota, T., Stabilization in the logarithmic Keller-Segel system, Nonlinear Anal., 170, 123-141 (2018) · Zbl 1391.35066 · doi:10.1016/j.na.2018.01.002
[54] Xiang, T., How strong a logistic damping can prevent blow-up for the minial Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459, 1172-1200 (2018) · Zbl 1380.35032 · doi:10.1016/j.jmaa.2017.11.022
[55] Xing, J.; Zheng, P.; Xiang, Y.; Wang, H., On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption, Z. Angew. Math. Phys., 72, 105 (2021) · Zbl 1466.35243 · doi:10.1007/s00033-021-01534-6
[56] Zhang, W.; Niu, P.; Liu, S., Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal. Real World Appl., 50, 484-497 (2019) · Zbl 1435.35068 · doi:10.1016/j.nonrwa.2019.05.002
[57] Zhao, J., A quasilinear parabolic-parabolic chemotaxis model with logistic source and singular sensitivity, Discrete Contin. Dyn. Syst. B, 27, 6, 3487-3513 (2022) · Zbl 1496.92009 · doi:10.3934/dcdsb.2021193
[58] Zhao, X.; Zheng, S., Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., 68, 2 (2017) · Zbl 1371.35151 · doi:10.1007/s00033-016-0749-5
[59] Zhao, X.; Zheng, S., Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differ. Equ., 267, 826-865 (2019) · Zbl 1412.35177 · doi:10.1016/j.jde.2019.01.026
[60] Zheng, J., Bao, G.: Boundedness and large time behavior in a higher-dimensional Keller-Segel system with singular sensitivity and logistic source, preprint. arXiv:1812.02355v4
[61] Zheng, P.; Mu, C.; Willie, R.; Hu, X., Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity, Comput. Math. Appl., 75, 1667-1675 (2018) · Zbl 1409.35103 · doi:10.1016/j.camwa.2017.11.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.