×

Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. (English) Zbl 1409.35046

The parabolic chemotaxis system with logistic-type source and homogeneous Neumann conditions is studied in convex domains of \({\mathbb R}^n\), \(n\geq 1\). The existence of very weak global in time solutions is shown, as well as the boundedness and regularity (for large time) of solutions are studied. Illustrations of dynamics of the system are given for \(n\leq 3\) by means of numerical simulations.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
92C17 Cell movement (chemotaxis, etc.)
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
Full Text: DOI

References:

[1] M. Aida; T. Tsujikawa; M. Efendiev; A. Yagi; M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London. Math. Soc., 74, 453-474 (2006) · Zbl 1125.37056 · doi:10.1112/S0024610706023015
[2] J. L. Aragón, R. A. Barrio, T. E. Woolley, R. E. Baker and P. K. Maini, Nonlinear effects on turing patterns: Time oscillations and chaos, Phys. Rev. E, 86 (2012), 026201.
[3] N. Bellomo; A. Bellouquid; Y. Tao; M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[4] J. Belmonte-Beitia, T. E. Woolley, J. G. Scott, P. K. Maini and E. A. Gaffney, Modelling biological invasions: Individual to population scales at interfaces, J. Theor. Biol., 334 (2013), 1 - 12, URL http://www.sciencedirect.com/science/article/pii/S0022519313002646. · Zbl 1397.92091
[5] S. W. Cho; S. Kwak; T. E. Woolley; M. J. Lee; E. J. Kim; R. E. Baker; H. J. Kim; J. S. Shin; C. Tickle; P. K. Maini; H. S. Jung, Interactions between shh, sostdc1 and wnt signaling and a new feedback loop for spatial patterning of the teeth, Development, 138, 1807-1816 (2011) · doi:10.1242/dev.056051
[6] T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis Nonlinearity, 21 (2008), 1057. · Zbl 1136.92006
[7] M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis, Discret. Contin. Dyn. Syst. Suppl, 409-417. · Zbl 1339.35064
[8] D. Horstmann; G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12, 159-177 (2001) · Zbl 1017.92006 · doi:10.1017/S0956792501004363
[9] D. Horstmann; M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Eqns., 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[10] W. Jäger; S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, T. Am. Math. Soc., 329, 819-824 (1992) · Zbl 0746.35002 · doi:10.1090/S0002-9947-1992-1046835-6
[11] E. F. Keller; L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[12] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasi-Linear Equations of Parabolic Type in Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 1988.
[13] J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equations., 258, 1158-1191 (2015) · Zbl 1319.35085 · doi:10.1016/j.jde.2014.10.016
[14] P. K. Maini; T. E. Woolley; R. E. Baker; E. A. Gaffney; S. S. Lee, Turing’s model for biological pattern formation and the robustness problem, Interface Focus, 2, 487-496 (2012) · doi:10.1098/rsfs.2011.0113
[15] P. K. Maini, T. E. Woolley, E. A. Gaffney and R. E. Baker, The Once and Future Turing chapter 15: Biological pattern formation, Cambridge University Press, 2016.
[16] M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolicparabolic Keller-Segel system, Discret. Contin. Dyn. Syst. Suppl, 809-916. · Zbl 1381.35194
[17] M. Marras; S. Vernier-Piro; G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Method. Appl. Sci., 39, 2787-2798 (2016) · Zbl 1342.35137 · doi:10.1002/mma.3728
[18] M. Marras; G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulg. Sci., 69, 687-696 (2016) · Zbl 1363.35159
[19] J. D. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications vol. 2, 3rd edition, Springer-Verlag, 2003. · Zbl 1006.92002
[20] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis intwo-dimensional domains, J. Inequal. Appl., 6, 37-55 (2001) · Zbl 0990.35024 · doi:10.1155/S1025583401000042
[21] K. Osaki; T. Tsujikawa; A. Yagi; M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. Theory Methods Appl., 51, 119-144 (2002) · Zbl 1005.35023 · doi:10.1016/S0362-546X(01)00815-X
[22] K. Osaki; A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvacioj., 44, 441-470 (2001) · Zbl 1145.37337
[23] K. J. Painter; T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240, 363-375 (2011) · Zbl 1255.37026 · doi:10.1016/j.physd.2010.09.011
[24] L. E. Payne; J. C. Song, Lower bounds for blow-up in a model of chemotaxis, J. Math. Anal. Appl., 385, 672-676 (2012) · Zbl 1231.35027 · doi:10.1016/j.jmaa.2011.06.086
[25] L. -E. Persson and N. Samko, Inequalities and Convexity, in Operator Theory, Operator Algebras and Applications, Springer Basel, 2014,279-306. · Zbl 1318.26039
[26] M. M. Porzio; V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 146-178 (1993) · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[27] Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381, 521-529 (2011) · Zbl 1225.35118 · doi:10.1016/j.jmaa.2011.02.041
[28] Y. Tao; M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Eqns., 252, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[29] J. I. Tello; M. Winkler, A chemotaxis system with logistic source, Commun. Part. Diff. Eq., 32, 849-877 (2007) · Zbl 1121.37068 · doi:10.1080/03605300701319003
[30] P.-F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance mathématique et physique, 10, 113-121 (1838)
[31] G. Viglialoro, On the blow-up time of a parabolic system with damping terms, C. R. Acad. Bulg. Sci., 67, 1223-1232 (2014) · Zbl 1324.35070
[32] G. Viglialoro, Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions, Diff. Int. Eqns., 29, 359-376 (2016) · Zbl 1374.35217
[33] G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439, 197-212 (2016) · Zbl 1386.35163 · doi:10.1016/j.jmaa.2016.02.069
[34] G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal. Real World Appl., 34, 520-535 (2017) · Zbl 1355.35094 · doi:10.1016/j.nonrwa.2016.10.001
[35] M. Winkler, Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348, 708-729 (2008) · Zbl 1147.92005 · doi:10.1016/j.jmaa.2008.07.071
[36] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equations, 248, 2889-2905 (2010) · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[37] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Part. Diff. Eq., 35, 1516-1537 (2010) · Zbl 1290.35139 · doi:10.1080/03605300903473426
[38] M. Winkler, Does a ’volume-filling effect’ always prevent chemotactic collapse?, Math. Method. Appl. Sci., 33, 12-24 (2010) · Zbl 1182.35220 · doi:10.1002/mma.1146
[39] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[40] M. Winkler; K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal. Theory Methods Appl., 72, 1044-1064 (2010) · Zbl 1183.92012 · doi:10.1016/j.na.2009.07.045
[41] T. E. Woolley, Spatiotemporal Behaviour of Stochastic and Continuum Models for Biological Signalling on Stationary and Growing Domains
[42] T. E. Woolley, 50 Visions of Mathematics chapter 48: Mighty Morphogenesis, Oxford Univ. Press, 2014.
[43] T. E. Woolley, R. E. Baker, E. A. Gaffney and P. K. Maini, Stochastic reaction and diffusion on growing domains: Understanding the breakdown of robust pattern formation Phys. Rev. E, 84 (2011), 046216.
[44] T. E. Woolley; R. E. Baker; C. Tickle; P. K. Maini; M. Towers, Mathematical modelling of digit specification by a sonic hedgehog gradient, Dev. Dynam., 243, 290-298 (2014) · doi:10.1002/dvdy.24068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.