×

Stabilization of a 1-D transmission problem for the Rayleigh beam and string with localized frictional damping. (English) Zbl 1515.35267

Summary: We are concerned with the stability of a 1-D coupled Rayleigh beam-string transmission system. We obtain the polynomial decay rate \(t^{-1}\) or the exponential decay rate for the given transmission system whether the frictional damping is only effective in the beam part or the string part, respectively. This paper generalizes the recent result in [Y.-F. Li, Z.-J. Han and G.-Q. Xu, Explicit decay rate for coupled string-beam system with localized frictional damping, Appl. Math. Lett. 78 2018, 51-58]. The main ingredient of the proof is some careful analysis for the Rayleigh beam and string transmission system.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
93D15 Stabilization of systems by feedback
35L57 Initial-boundary value problems for higher-order hyperbolic systems
74M05 Control, switches and devices (“smart materials”) in solid mechanics
Full Text: DOI

References:

[1] K. Ammari, M. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Netw. Heterog. Media 4 (2009), no. 1, 19-34. · Zbl 1183.93109
[2] K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differential Equations 249 (2010), no. 3, 707-727. · Zbl 1201.35128
[3] K. Ammari and G. Vodev, Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation, Cubo 11 (2009), no. 5, 39-49. · Zbl 1184.35045
[4] W. D. Bastos and C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differential Equations 2007 (2007), Paper No. 60. · Zbl 1136.35315
[5] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347 (2010), no. 2, 455-478. · Zbl 1185.47044
[6] S. Chai, Uniform decay rate for the transmission wave equations with variable coefficients, J. Syst. Sci. Complex. 24 (2011), no. 2, 253-260. · Zbl 1226.93111
[7] S. G. Chai and K. S. Liu, Boundary stabilization of the transmission of wave equations with variable coefficients, Chinese Ann. Math. Ser. A 26 (2005), no. 5, 605-612. · Zbl 1090.35010
[8] S. Chen, K. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping, SIAM J. Appl. Math. 59 (1999), no. 2, 651-668. · Zbl 0924.35018
[9] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 1991.
[10] C. Guiver and M. R. Opmeer, Non-dissipative boundary feedback for Rayleigh and Timoshenko beams, Systems Control Lett. 59 (2010), no. 9, 578-586. · Zbl 1207.93049
[11] B. Z. Guo, Basis property of a Rayleigh beam with boundary stabilization, J. Optim. Theory Appl. 112 (2002), no. 3, 529-547. · Zbl 1147.93387
[12] Y.-P. Guo, J.-M. Wang and D.-X. Zhao, Energy decay estimates for a two-dimensional coupled wave-plate system with localized frictional damping, ZAMM Z. Angew. Math. Mech. 100 (2020), no. 2, Article ID e201900030. · Zbl 07794849
[13] F. Hassine, Stability of elastic transmission systems with a local Kelvin-Voigt damping, Eur. J. Control 23 (2015), 84-93. · Zbl 1360.93600
[14] F. Hassine, Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 6, 1757-1774. · Zbl 1350.35031
[15] F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping, Internat. J. Control 89 (2016), no. 10, 1933-1950. · Zbl 1364.35043
[16] F. Hassine, Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping, J. Math. Anal. Appl. 455 (2017), no. 2, 1765-1782. · Zbl 1379.35024
[17] K. Kiani, Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model, Appl. Math. Model. 37 (2013), no. 4, 1836-1850. · Zbl 1349.74174
[18] J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994. · Zbl 0810.73004
[19] Y.-F. Li, Z.-J. Han and G.-Q. Xu, Explicit decay rate for coupled string-beam system with localized frictional damping, Appl. Math. Lett. 78 (2018), 51-58. · Zbl 1383.35028
[20] W. Liu and G. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Aust. Math. Soc. 57 (1998), no. 2, 305-327. · Zbl 0914.35074
[21] L. Lu and J.-M. Wang, Transmission problem of Schrödinger and wave equation with viscous damping, Appl. Math. Lett. 54 (2016), 7-14. · Zbl 1327.93228
[22] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 13 (1959), 115-162. · Zbl 0088.07601
[23] A. J. A. Ramos and M. W. P. Souza, Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation, Z. Angew. Math. Phys. 68 (2017), no. 2, Paper No. 48. · Zbl 1373.35191
[24] B. Rao, A compact perturbation method for the boundary stabilization of the Rayleigh beam equation, Appl. Math. Optim. 33 (1996), no. 3, 253-264. · Zbl 0847.93052
[25] B. Rao, Le taux optimal de décroissance de l’énergie dans l’équation de poutre de Rayleigh, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 737-742. · Zbl 0894.73072
[26] B. Ren, J.-M. Wang and M. Krstic, Stabilization of an ODE-Schrödinger cascade, Systems Control Lett. 62 (2013), no. 6, 503-510. · Zbl 1279.93085
[27] F. Wang and J.-M. Wang, Stability of an interconnected system of Euler-Bernoulli beam and wave equation through boundary coupling, Systems Control Lett. 138 (2020), Article ID 104664. · Zbl 1436.93119
[28] J.-M. Wang and M. Krstic, Stability of an interconnected system of Euler-Bernoulli beam and heat equation with boundary coupling, ESAIM Control Optim. Calc. Var. 21 (2015), no. 4, 1029-1052. · Zbl 1320.93068
[29] J.-M. Wang, B. Ren and M. Krstic, Stabilization and Gevrey regularity of a Schrödinger equation in boundary feedback with a heat equation, IEEE Trans. Automat. Control 57 (2012), no. 1, 179-185. · Zbl 1369.93510
[30] J.-M. Wang, F. Wang and X.-D. Liu, Exponential stability of a Schrödinger equation through boundary coupling a wave equation, IEEE Trans. Automat. Control 65 (2020), no. 7, 3136-3142. · Zbl 1533.93640
[31] J.-M. Wang, G.-Q. Xu and S.-P. Yung, Exponential stability of variable coefficients Rayleigh beams under boundary feedback controls: A Riesz basis approach, Systems Control Lett. 51 (2004), no. 1, 33-50. · Zbl 1157.93498
[32] G. Weiss and R. F. Curtain, Exponential stabilization of a Rayleigh beam using collocated control, IEEE Trans. Automat. Control 53 (2008), no. 3, 643-654. · Zbl 1367.74029
[33] C.-G. Zhang, Energy decay estimates of the Rayleigh beam with a pointwise feedback, Gongcheng Shuxue Xuebao 24 (2007), no. 6, 1109-1116. · Zbl 1150.35333
[34] Q. Zhang, On the lack of exponential stability for an elastic-viscoelastic waves interaction system, Nonlinear Anal. Real World Appl. 37 (2017), 387-411. · Zbl 1375.35037
[35] Q. Zhang, J.-M. Wang and B.-Z. Guo, Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation, Math. Control Signals Systems 26 (2014), no. 1, 77-118. · Zbl 1291.93258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.