×

Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. (English) Zbl 1350.35031

Summary: Let a fourth and a second order evolution equations be coupled via the interface by transmission conditions, and suppose that the first one is stabilized by a localized distributed feedback. What will then be the effect of such a partial stabilization on the decay of solutions at infinity? Is the behavior of the first component sufficient to stabilize the second one? The answer given in this paper is that sufficiently smooth solutions decay logarithmically at infinity even the feedback dissipation affects an arbitrarily small open subset of the interior. The method used, in this case, is based on a frequency method, and this by combining a contradiction argument with the Carleman estimates technique to carry out a special analysis for the resolvent.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35M32 Boundary value problems for mixed-type systems of PDEs
93D15 Stabilization of systems by feedback

References:

[1] K. Ammari, Stabilization of a transmission wave/plate equation,, Journal of Differential Equations, 249, 707 (2010) · Zbl 1201.35128 · doi:10.1016/j.jde.2010.03.007
[2] M. Alves, Exponential and the lack of exponential stability in transmission problems with localized Kelvin-Voigt dissipation,, Acta Mechanica, 219, 145 (2011)
[3] K. Ammari, Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation,, CUBO a mathematical journal, 11, 39 (2009) · Zbl 1184.35045
[4] C. J. K. Batty, Non-uniform stability for bounded semi-groups on Banach spaces,, Journal of Evolution Equation, 8, 765 (2008) · Zbl 1185.47043 · doi:10.1007/s00028-008-0424-1
[5] M. Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization,, Asymptotic Anal., 35, 257 (2003) · Zbl 1137.35388
[6] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonnance au voisinage du réel,, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], 180, 1 (1998) · Zbl 0918.35081 · doi:10.1007/BF02392877
[7] S. Chen, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping,, SIAM J. Appl. Math., 59, 651 (1998) · Zbl 0924.35018
[8] M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping,, Nonlinear Analysis, 73, 987 (2010) · Zbl 1196.35049 · doi:10.1016/j.na.2010.04.026
[9] T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface,, Asymptot. Anal., 51, 17 (2007) · Zbl 1227.35062
[10] M. Eller, Carleman estimates for elliptic boundary value problems with applications to the stabilization of hyperbolic systems,, Evolution Equations and Control Theory, 1, 271 (2012) · Zbl 1263.35089 · doi:10.3934/eect.2012.1.271
[11] I. K. Fathallah, Logarithmic decay of the energy for an hyperbolic-parabolic coupled system,, ESAIM-control Optimization and Calculus of Variations, 17, 801 (2011) · Zbl 1223.37098 · doi:10.1051/cocv/2010026
[12] F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping,, International Journal of Control, 1 (2015) · Zbl 1364.35043 · doi:10.1080/00207179.2015.1135509
[13] F. Hassine, Remark on the pointwise stabilization of an elastic string equation,, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 96, 519 (2016) · Zbl 1529.35295 · doi:10.1002/zamm.201400260
[14] F. Hassine, Stability of elastic transmission systems with a local Kelvin-Voigt damping,, European Journal of Control, 23, 84 (2015) · Zbl 1360.93600 · doi:10.1016/j.ejcon.2015.03.001
[15] G. Lebeau, Équation des ondes amorties,, (French) [Damped wave equation], 19, 73 (1996) · Zbl 0863.58068
[16] G. Lebeau, Contrôle exacte de l’équation de la chaleur,, (French) [Exact control of the heat equation], 20, 335 (1995) · Zbl 0819.35071 · doi:10.1080/03605309508821097
[17] G. Lebeau, Stabilisation de l’équation des ondes par le bord,, (French) [Stabilization of the wave equations by the boundary], 86, 465 (1997) · Zbl 0884.58093 · doi:10.1215/S0012-7094-97-08614-2
[18] G. Lebeau, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Ration. Mech. Anal., 148, 179 (1999) · Zbl 0939.74016 · doi:10.1007/s002050050160
[19] K. Liu, Exponential decay of the energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping,, SIAM J. Control Optim., 36, 1086 (1998) · Zbl 0909.35018 · doi:10.1137/S0363012996310703
[20] C. A. Raposo, A transmission problem for Euler-Bernoulli beam with Kelvin-Voigt damping,, Applied Mathematics and Information Sciences, 5, 17 (2011) · Zbl 1221.74050
[21] J. Le Rousseau, Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques,, Applications au prolongement unique et au contrôle des équations paraboliques (2009)
[22] J. Le Rousseau, Controllability of a parabolic system with a diffusive interface,, In Séminaire Laurent Schwartz-Équations aux derivées partielles et applications, 2011 (2013) · Zbl 1319.35078
[23] J. Le Rousseau, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations,, Arch. Rational Mech. Anal., 195, 953 (2010) · Zbl 1202.35336 · doi:10.1007/s00205-009-0242-9
[24] J. Rauch, Polynomial decay for hyperbolic-parabolic coupled system,, Math. Pures Appl., 84, 407 (2005) · Zbl 1077.35030 · doi:10.1016/j.matpur.2004.09.006
[25] L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms,, Mathematical control and related fields, 2, 45 (2012) · Zbl 1246.93093 · doi:10.3934/mcrf.2012.2.45
[26] M. Tucsnak, <em>Observation And Control For Operator Semigroups,</em>, Birkhäuser Verlag AG (2009) · Zbl 1188.93002 · doi:10.1007/978-3-7643-8994-9
[27] J. T. Wolka, <em>Boundary Value Problems For Elliptic System,</em>, Cambridge University Press (1995) · Zbl 0836.35042
[28] X. Zhang, Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction,, International Series of Numerical Mathematics, 154, 445 (2007) · Zbl 1113.37063 · doi:10.1007/978-3-7643-7719-9_43
[29] X. Zhang, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. Anal., 184, 49 (2007) · Zbl 1178.74075 · doi:10.1007/s00205-006-0020-x
[30] W. Zhang, Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks,, J. Math. Anal. Appl., 422, 1504 (2015) · Zbl 1308.58018 · doi:10.1016/j.jmaa.2014.09.044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.