×

Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping. (English) Zbl 1364.35043

Summary: We consider the beam equation coupled by a transmission condition with a wave equation in an elastic beam. The beam has clamped boundary conditions and the wave equation has Dirichlet boundary conditions. The damping which is locally distributed acts through one of the equations only; its effect is transmitted to the other equation through the coupling. First, we consider the case where the dissipation acts through the beam equation. We show that in this case the coupled system is polynomially stable by using a recent result of Borichev and Tomilov on polynomial decay characterisation of bounded semigroups, we provide precise decay estimates showing that the energy of this coupled system decays polynomially as the time variable goes to infinity. Second, we discuss the case where the damping acts through the wave equation. Proceeding as in the first case, we prove that this system is also polynomially stable and we provide precise polynomial decay estimates for its energy. Finally, we show the lack of uniform exponential decay of solutions for both models.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35L20 Initial-boundary value problems for second-order hyperbolic equations
35L35 Initial-boundary value problems for higher-order hyperbolic equations
35L57 Initial-boundary value problems for higher-order hyperbolic systems
93D20 Asymptotic stability in control theory

References:

[1] Adams R.A., Sobolev spaces (1975)
[2] DOI: 10.1137/S0363012901385368 · Zbl 1031.35023 · doi:10.1137/S0363012901385368
[3] DOI: 10.1007/s00707-010-0443-1 · Zbl 1381.35172 · doi:10.1007/s00707-010-0443-1
[4] DOI: 10.1016/j.jde.2010.03.007 · Zbl 1201.35128 · doi:10.1016/j.jde.2010.03.007
[5] Ammari K., CUBO: a Mathematical Journal 11 pp 39– (2009)
[6] DOI: 10.1007/s00245-006-0884-z · Zbl 1122.93074 · doi:10.1007/s00245-006-0884-z
[7] DOI: 10.1007/PL00005977 · Zbl 0910.35014 · doi:10.1007/PL00005977
[8] Bastos W.D., Applied Mathematics and Information Sciences 5 (1) pp 17– (2011)
[9] DOI: 10.1002/mana.200410429 · Zbl 1118.47034 · doi:10.1002/mana.200410429
[10] DOI: 10.1137/0316023 · Zbl 0384.93035 · doi:10.1137/0316023
[11] DOI: 10.1007/s00208-009-0439-0 · Zbl 1185.47044 · doi:10.1007/s00208-009-0439-0
[12] DOI: 10.1137/S0036139996292015 · Zbl 0924.35018 · doi:10.1137/S0036139996292015
[13] Duyckaerts T., Asymptotic Analysis 51 pp 17– (2007)
[14] DOI: 10.1051/cocv/2010026 · Zbl 1223.37098 · doi:10.1051/cocv/2010026
[15] DOI: 10.1016/j.ejcon.2015.03.001 · Zbl 1360.93600 · doi:10.1016/j.ejcon.2015.03.001
[16] DOI: 10.1137/S0363012996310703 · Zbl 0909.35018 · doi:10.1137/S0363012996310703
[17] DOI: 10.1007/s00033-004-3073-4 · Zbl 1100.47036 · doi:10.1007/s00033-004-3073-4
[18] DOI: 10.1007/s002050050160 · Zbl 0939.74016 · doi:10.1007/s002050050160
[19] DOI: 10.1007/978-1-4612-5561-1 · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[20] DOI: 10.1016/j.matpur.2004.09.006 · Zbl 1077.35030 · doi:10.1016/j.matpur.2004.09.006
[21] DOI: 10.3934/mcrf.2012.2.45 · Zbl 1246.93093 · doi:10.3934/mcrf.2012.2.45
[22] DOI: 10.1016/S1631-073X(03)00204-8 · Zbl 1029.93037 · doi:10.1016/S1631-073X(03)00204-8
[23] DOI: 10.1007/978-3-7643-7719-9_43 · doi:10.1007/978-3-7643-7719-9_43
[24] DOI: 10.1007/s00205-006-0020-x · Zbl 1178.74075 · doi:10.1007/s00205-006-0020-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.