×

Superconvergence and postprocessing of the continuous Galerkin method for nonlinear Volterra integro-differential equations. (English) Zbl 1514.65096

Summary: We propose a novel postprocessing technique for improving the global accuracy of the continuous Galerkin (CG) method for nonlinear Volterra integro-differential equations. The key idea behind the postprocessing technique is to add a higher order Lobatto polynomial of degree \(k + 1\) to the CG approximation of degree \(k\). We first show that the CG method superconverges at the nodal points of the time partition. We further prove that the postprocessed CG approximation converges one order faster than the unprocessed CG approximation in the \(L^2\)-, \(H^1\)- and \(L^\infty\)-norms. As a by-product of the postprocessed superconvergence results, we construct several a posteriori error estimators and prove that they are asymptotically exact. Numerical examples are presented to highlight the superconvergence properties of the postprocessed CG approximations and the robustness of the a posteriori error estimators.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65R20 Numerical methods for integral equations
45D05 Volterra integral equations
45J05 Integro-ordinary differential equations

References:

[1] M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000). · Zbl 1008.65076 · doi:10.1002/9781118032824
[2] I. Babuška and W.C. Rheinboldt, A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM J. Numer. Anal. 18 (1981) 565-589. · Zbl 0487.65060
[3] H. Brunner, On the numerical solution of nonlinear Volterra integro-differential equations. BIT Numer. Math. 13 (1973) 381-390. · Zbl 0265.65056 · doi:10.1007/BF01933399
[4] H. Brunner, Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations. Math. Comput. 42 (1984) 95-109. · Zbl 0543.65092
[5] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004). · Zbl 1059.65122
[6] H. Brunner and P.J. van der Houwen, The Numerical Solution of Volterra Equations. North-Holland, Amsterdam (1986). · Zbl 0611.65092
[7] H. Brunner and D. Schötzau, hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44 (2006) 22-245. · Zbl 1116.65127
[8] H. Brunner, A. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39 (2001) 957-982. · Zbl 0998.65134
[9] T.A. Burton, Volterra Integral and Differential Equations, 2nd edition. Vol. 202, Mathematics in Science and Engineering, Elsevier B.V. Amsterdam (2005). · Zbl 1075.45001
[10] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Scientific Computation. Springer, Berlin, Heidelberg (2006). · Zbl 1093.76002
[11] W.X. Cao, Z.M. Zhang and Q.S. Zou, Is 2k-conjecture valid for finite volume methods? SIAM J. Numer. Anal. 53 (2015) 942-962. · Zbl 1327.65216
[12] W.X. Cao, H.L. Liu and Z.M. Zhang, Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Partial Differ. Equ. 33 (2017) 290-317. · Zbl 1361.65061
[13] W.X. Cao, L.L. Jia and Z.M. Zhang, A C^1 Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete Contin. Dyn. Syst. Ser. B 26 (2021) 81-105. · Zbl 1465.65128
[14] Q. Hu, Stieltjes derivatives and β-polynomial spline collocation for Volterra integrodifferential equations with singularities. SIAM J. Numer. Anal. 33 (1996) 208-220. · Zbl 0851.65098
[15] Q.M. Huang and H.H. Xie, Superconvergence of Galerkin solutions for Hammerstein equations. Int. J. Numer. Anal. Model. 6 (2009) 696-710. · Zbl 1499.65746
[16] H. Kaneko and Y. Xu, Superconvergence of the iterated Galerkin methods for Hammerstein equations. SIAM J. Numer. Anal. 33 (1996) 1048-1064. · Zbl 0860.65138
[17] T. Lin, Y.P. Lin, M. Rao and S.H. Zhang, Petrov-Galerkin methods for linear Volterra integro-differential equations. SIAM J. Numer. Anal. 38 (2000) 937-963. · Zbl 0983.65138
[18] T. Lin, Y.P. Lin, P. Luo, M. Rao and S.H. Zhang, Petrov-Galerkin methods for nonlinear Volterra integro-differential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B 8 (2001) 405-426. · Zbl 0998.65135
[19] P. Linz, Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia, PA (1985). · Zbl 0566.65094 · doi:10.1137/1.9781611970852
[20] Ch Lubich, Runge-Kutta theory for Volterra integro-differential equations. Numer. Math. 40 (1982) 119-135. · Zbl 0491.65064
[21] K. Mustapha, A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels. Math. Comput. 82 (2013) 1987-2005. · Zbl 1273.65198
[22] K. Mustapha and J.K. Ryan, Post-processing discontinuous Galerkin solutions to Volterra integro-differential equations: analysis and simulations. J. Comput. Appl. Math. 253 (2013) 89-103. · Zbl 1291.65387 · doi:10.1016/j.cam.2013.03.047
[23] I.P. Natanson, Theory of Functions of a Real Variable, Translated from the Russian by Leo F. Boron with the collaboration of Edwin Hewitt. Frederick Ungar Publishing Co., New York (1955). · Zbl 0064.29102
[24] T. Tang, A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13 (1993) 93-99. · Zbl 0765.65126
[25] Z.Q. Wang, Y.L. Guo and L.J. Yi, An hp-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels. Math. Comput. 86 (2017) 2285-2324. · Zbl 1364.65299
[26] A.M. Wazwaz, Linear and Nonlinear Integral Equations, Methods and Applications. Higher Education Press, Beijing, Springer, Heidelberg (2011). · Zbl 1227.45002
[27] J. Wen, C.M. Huang and M. Li, Stability analysis of Runge-Kutta methods for Volterra integro-differential equations. Appl. Numer. Math. 146 (2019) 73-88. · Zbl 1437.65249 · doi:10.1016/j.apnum.2019.07.004
[28] Y.X. Wei and Y.P. Chen, Convergence analysis of the Legendre spectral collocation methods for second order Volterra integro-differential equations. Numer. Math. Theory Methods Appl. 4 (2011) 419-438. · Zbl 1265.65278
[29] L.J. Yi, An h-p version of the continuous Petrov-Galerkin finite element method for nonlinear Volterra integro-differential equations. J. Sci. Comput. 65 (2015) 715-734. · Zbl 1327.65147
[30] L.J. Yi and B.Q. Guo, An h-p Petrov-Galerkin finite element method for linear Volterra integro-differential equations. Sci. China Math. 57 (2014) 2285-2300. · Zbl 1311.65172
[31] L.J. Yi and B.Q. Guo, An h-p version of the continuous Petrov-Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels. SIAM J. Numer. Anal. 53 (2015) 2677-2704. · Zbl 1330.65206
[32] W. Yuan and T. Tang, The numerical analysis of implicit Runge-Kutta methods for a certain nonlinear integro-differential equation. Math. Comput. 54 (1990) 155-168. · Zbl 0687.65129
[33] S.H. Zhang, T. Lin, Y.P. Lin and M. Rao, Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations. Appl. Math. 45 (2000) 241-263. · Zbl 1058.65147 · doi:10.1023/A:1022333811602
[34] S.H. Zhang, T. Lin, Y.P. Lin and M. Rao, Extrapolation and a-posteriori error estimators of Petrov-Galerkin methods for non-linear Volterra integro-differential equations. J. Comput. Math. 19 (2001) 407-422. · Zbl 0989.65151
[35] M.Z. Zhang, X.Y. Mao and L.J. Yi, Exponential convergence of the hp-version of the composite Gauss-Legendre quadrature for integrals with endpoint singularities. Appl. Numer. Math. 170 (2021) 340-352. · Zbl 1482.65036 · doi:10.1016/j.apnum.2021.08.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.